Title:
|
Weak Boolean products of bounded dually residuated $l$-monoids (English) |
Author:
|
Kühr, J. |
Author:
|
Rachůnek, J. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
132 |
Issue:
|
3 |
Year:
|
2007 |
Pages:
|
225-236 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In the paper we deal with weak Boolean products of bounded dually residuated $\ell $-monoids (DR$l$-monoids). Since bounded DRl-monoids are a generalization of pseudo MV-algebras and pseudo BL-algebras, the results can be immediately applied to these algebras. (English) |
Keyword:
|
bounded DR$l$-monoid |
Keyword:
|
weak Boolean product |
Keyword:
|
prime spectrum |
MSC:
|
03G25 |
MSC:
|
06D35 |
MSC:
|
06F05 |
idZBL:
|
Zbl 1174.06329 |
idMR:
|
MR2355655 |
DOI:
|
10.21136/MB.2007.134122 |
. |
Date available:
|
2009-09-24T22:31:11Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134122 |
. |
Reference:
|
[1] P. Bahls, J. Cole, N. Galatos, P. Jipsen, C. Tsinakis: Cancellative residuated lattices.Algebra Univers. 50 (2003), 83–106. MR 2026830, 10.1007/s00012-003-1822-4 |
Reference:
|
[2] R. Balbes, P. Dwinger: Distributive Lattices.University of Missouri Press, Columbia, 1974. MR 0373985 |
Reference:
|
[3] R. L. O. Cignoli, I. M. L. D’Ottaviano, D. Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097 |
Reference:
|
[4] R. L. O. Cignoli, A. Torrens: The poset of prime $\ell $ ideals of an Abelian $\ell $ group.J. Algebra 184 (1996), 604–612. MR 1409232 |
Reference:
|
[5] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo $\mathop {\text{BL}}$-algebras: Part I.Mult.-Valued Log. 8 (2002), 673–714. MR 1948853 |
Reference:
|
[6] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo $\mathop {\text{BL}}$-algebras: Part II.Mult.-Valued Log. 8 (2002), 717–750. MR 1948854 |
Reference:
|
[7] A. Di Nola, G. Georgescu, L. Leuştean: Boolean products of $\mathop {\text{BL}}$-algebras.J. Math. Anal. Appl. 251 (2000), 106–131. MR 1790401, 10.1006/jmaa.2000.7024 |
Reference:
|
[8] N. Galatos, C. Tsinakis: Generalized MV-algebras.J. Algebra 283 (2005), 254–291. MR 2102083, 10.1016/j.jalgebra.2004.07.002 |
Reference:
|
[9] G. Georgescu, A. Iorgulescu: Pseudo $\mathop {\text{MV}}$-algebras.Mult.-Valued Log. 6 (2001), 95–135. MR 1817439 |
Reference:
|
[10] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer Acad. Publ., Dordrecht, 1998. MR 1900263 |
Reference:
|
[11] P. Hájek: Observations on non-commutative fuzzy logic.Soft Comput. 8 (2003), 38–43. Zbl 1075.03009, 10.1007/s00500-002-0246-y |
Reference:
|
[12] P. Jipsen, C. Tsinakis: A survey of residuated lattices.Ordered Algebraic Structures (J. Martines, ed.), Kluwer Acad. Publ., Dordrecht, 2002, 19–56. MR 2083033 |
Reference:
|
[13] T. Kovář: A general theory of dually residuated lattice-ordered monoids.Ph.D. Thesis, Palacký University, Olomouc, 1996. |
Reference:
|
[14] J. Kühr: Ideals of non-commutative $\mathop {\text{DRl}}$-monoids.Czech. Math. J. 55 (2005), 97–111. MR 2121658 |
Reference:
|
[15] J. Kühr: Pseudo $\mathop {\text{BL}}$-algebras and $\mathop {\text{DRl}}$-monoids.Math. Bohem. 128 (2003), 199–208. MR 1995573 |
Reference:
|
[16] J. Kühr: Prime ideals and polars in $\mathop {\text{DRl}}$-monoids and pseudo $\mathop {\text{BL}}$-algebras.Math. Slovaca 53 (2003), 233–246. MR 2025020 |
Reference:
|
[17] J. Kühr: Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids.Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Mathematica 43 (2004), 105–112. Zbl 1071.06007, MR 2124607 |
Reference:
|
[18] J. Kühr: Spectral topologies of dually residuated lattice-ordered monoids.Math. Bohem. 129 (2004), 379–391. Zbl 1080.06023, MR 2102611 |
Reference:
|
[19] J. Kühr: Dually residuated lattice-ordered monoids.Ph.D. Thesis, Palacký University, Olomouc, 2003. Zbl 1066.06008, MR 2070377 |
Reference:
|
[20] J. Rachůnek: $\mathop {\text{DRl}}$-semigroups and $\mathop {\text{MV}}$-algebras.Czech. Math. J. 48 (1998), 365–372. 10.1023/A:1022801907138 |
Reference:
|
[21] J. Rachůnek: $\mathop {\text{MV}}$-algebras are categorically equivalent to a class of DRl$_{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115 |
Reference:
|
[22] J. Rachůnek: Ordered prime spectra of bounded $\mathop {\text{DRl}}$-monoids.Math. Bohem. 125 (2000), 505–509. MR 1802299 |
Reference:
|
[23] J. Rachůnek: A duality between algebras of basic logic and bounded representable $\mathop {\text{DRl}}$-monoids.Math. Bohem. 126 (2001), 561–569. MR 1970259 |
Reference:
|
[24] J. Rachůnek: A non-commutative generalization of $\mathop {\text{MV}}$-algebras.Czech. Math. J. 52 (2002), 255–273. MR 1905434, 10.1023/A:1021766309509 |
Reference:
|
[25] J. Rachůnek: Prime spectra of non-commutative generalizations of $\mathop {\text{MV}}$-algebras.Algebra Univers. 48 (2002), 151–169. MR 1929902, 10.1007/PL00012447 |
Reference:
|
[26] K. L. N. Swamy: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284 |
. |