Previous |  Up |  Next

Article

Title: Weak Boolean products of bounded dually residuated $l$-monoids (English)
Author: Kühr, J.
Author: Rachůnek, J.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 3
Year: 2007
Pages: 225-236
Summary lang: English
.
Category: math
.
Summary: In the paper we deal with weak Boolean products of bounded dually residuated $\ell $-monoids (DR$l$-monoids). Since bounded DRl-monoids are a generalization of pseudo MV-algebras and pseudo BL-algebras, the results can be immediately applied to these algebras. (English)
Keyword: bounded DR$l$-monoid
Keyword: weak Boolean product
Keyword: prime spectrum
MSC: 03G25
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1174.06329
idMR: MR2355655
DOI: 10.21136/MB.2007.134122
.
Date available: 2009-09-24T22:31:11Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134122
.
Reference: [1] P. Bahls, J. Cole, N. Galatos, P. Jipsen, C. Tsinakis: Cancellative residuated lattices.Algebra Univers. 50 (2003), 83–106. MR 2026830, 10.1007/s00012-003-1822-4
Reference: [2] R. Balbes, P. Dwinger: Distributive Lattices.University of Missouri Press, Columbia, 1974. MR 0373985
Reference: [3] R. L. O. Cignoli, I. M. L. D’Ottaviano, D. Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097
Reference: [4] R. L. O. Cignoli, A. Torrens: The poset of prime $\ell $ ideals of an Abelian $\ell $ group.J. Algebra 184 (1996), 604–612. MR 1409232
Reference: [5] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo $\mathop {\text{BL}}$-algebras: Part I.Mult.-Valued Log. 8 (2002), 673–714. MR 1948853
Reference: [6] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo $\mathop {\text{BL}}$-algebras: Part II.Mult.-Valued Log. 8 (2002), 717–750. MR 1948854
Reference: [7] A. Di Nola, G. Georgescu, L. Leuştean: Boolean products of $\mathop {\text{BL}}$-algebras.J. Math. Anal. Appl. 251 (2000), 106–131. MR 1790401, 10.1006/jmaa.2000.7024
Reference: [8] N. Galatos, C. Tsinakis: Generalized MV-algebras.J. Algebra 283 (2005), 254–291. MR 2102083, 10.1016/j.jalgebra.2004.07.002
Reference: [9] G. Georgescu, A. Iorgulescu: Pseudo $\mathop {\text{MV}}$-algebras.Mult.-Valued Log. 6 (2001), 95–135. MR 1817439
Reference: [10] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer Acad. Publ., Dordrecht, 1998. MR 1900263
Reference: [11] P. Hájek: Observations on non-commutative fuzzy logic.Soft Comput. 8 (2003), 38–43. Zbl 1075.03009, 10.1007/s00500-002-0246-y
Reference: [12] P. Jipsen, C. Tsinakis: A survey of residuated lattices.Ordered Algebraic Structures (J. Martines, ed.), Kluwer Acad. Publ., Dordrecht, 2002, 19–56. MR 2083033
Reference: [13] T. Kovář: A general theory of dually residuated lattice-ordered monoids.Ph.D. Thesis, Palacký University, Olomouc, 1996.
Reference: [14] J. Kühr: Ideals of non-commutative $\mathop {\text{DRl}}$-monoids.Czech. Math. J. 55 (2005), 97–111. MR 2121658
Reference: [15] J. Kühr: Pseudo $\mathop {\text{BL}}$-algebras and $\mathop {\text{DRl}}$-monoids.Math. Bohem. 128 (2003), 199–208. MR 1995573
Reference: [16] J. Kühr: Prime ideals and polars in $\mathop {\text{DRl}}$-monoids and pseudo $\mathop {\text{BL}}$-algebras.Math. Slovaca 53 (2003), 233–246. MR 2025020
Reference: [17] J. Kühr: Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids.Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Mathematica 43 (2004), 105–112. Zbl 1071.06007, MR 2124607
Reference: [18] J. Kühr: Spectral topologies of dually residuated lattice-ordered monoids.Math. Bohem. 129 (2004), 379–391. Zbl 1080.06023, MR 2102611
Reference: [19] J. Kühr: Dually residuated lattice-ordered monoids.Ph.D. Thesis, Palacký University, Olomouc, 2003. Zbl 1066.06008, MR 2070377
Reference: [20] J. Rachůnek: $\mathop {\text{DRl}}$-semigroups and $\mathop {\text{MV}}$-algebras.Czech. Math. J. 48 (1998), 365–372. 10.1023/A:1022801907138
Reference: [21] J. Rachůnek: $\mathop {\text{MV}}$-algebras are categorically equivalent to a class of DRl$_{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115
Reference: [22] J. Rachůnek: Ordered prime spectra of bounded $\mathop {\text{DRl}}$-monoids.Math. Bohem. 125 (2000), 505–509. MR 1802299
Reference: [23] J. Rachůnek: A duality between algebras of basic logic and bounded representable $\mathop {\text{DRl}}$-monoids.Math. Bohem. 126 (2001), 561–569. MR 1970259
Reference: [24] J. Rachůnek: A non-commutative generalization of $\mathop {\text{MV}}$-algebras.Czech. Math. J. 52 (2002), 255–273. MR 1905434, 10.1023/A:1021766309509
Reference: [25] J. Rachůnek: Prime spectra of non-commutative generalizations of $\mathop {\text{MV}}$-algebras.Algebra Univers. 48 (2002), 151–169. MR 1929902, 10.1007/PL00012447
Reference: [26] K. L. N. Swamy: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284
.

Files

Files Size Format View
MathBohem_132-2007-3_1.pdf 284.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo