[2] R. Balbes, P. Dwinger:
Distributive Lattices. University of Missouri Press, Columbia, 1974.
MR 0373985
[3] R. L. O. Cignoli, I. M. L. D’Ottaviano, D. Mundici:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000.
MR 1786097
[4] R. L. O. Cignoli, A. Torrens:
The poset of prime $\ell $ ideals of an Abelian $\ell $ group. J. Algebra 184 (1996), 604–612.
MR 1409232
[5] A. Di Nola, G. Georgescu, A. Iorgulescu:
Pseudo $\mathop {\text{BL}}$-algebras: Part I. Mult.-Valued Log. 8 (2002), 673–714.
MR 1948853
[6] A. Di Nola, G. Georgescu, A. Iorgulescu:
Pseudo $\mathop {\text{BL}}$-algebras: Part II. Mult.-Valued Log. 8 (2002), 717–750.
MR 1948854
[9] G. Georgescu, A. Iorgulescu:
Pseudo $\mathop {\text{MV}}$-algebras. Mult.-Valued Log. 6 (2001), 95–135.
MR 1817439
[10] P. Hájek:
Metamathematics of Fuzzy Logic. Kluwer Acad. Publ., Dordrecht, 1998.
MR 1900263
[12] P. Jipsen, C. Tsinakis:
A survey of residuated lattices. Ordered Algebraic Structures (J. Martines, ed.), Kluwer Acad. Publ., Dordrecht, 2002, 19–56.
MR 2083033
[13] T. Kovář: A general theory of dually residuated lattice-ordered monoids. Ph.D. Thesis, Palacký University, Olomouc, 1996.
[14] J. Kühr:
Ideals of non-commutative $\mathop {\text{DRl}}$-monoids. Czech. Math. J. 55 (2005), 97–111.
MR 2121658
[15] J. Kühr:
Pseudo $\mathop {\text{BL}}$-algebras and $\mathop {\text{DRl}}$-monoids. Math. Bohem. 128 (2003), 199–208.
MR 1995573
[16] J. Kühr:
Prime ideals and polars in $\mathop {\text{DRl}}$-monoids and pseudo $\mathop {\text{BL}}$-algebras. Math. Slovaca 53 (2003), 233–246.
MR 2025020
[17] J. Kühr:
Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Mathematica 43 (2004), 105–112.
MR 2124607 |
Zbl 1071.06007
[18] J. Kühr:
Spectral topologies of dually residuated lattice-ordered monoids. Math. Bohem. 129 (2004), 379–391.
MR 2102611 |
Zbl 1080.06023
[19] J. Kühr:
Dually residuated lattice-ordered monoids. Ph.D. Thesis, Palacký University, Olomouc, 2003.
MR 2070377 |
Zbl 1066.06008
[20] J. Rachůnek:
$\mathop {\text{DRl}}$-semigroups and $\mathop {\text{MV}}$-algebras. Czech. Math. J. 48 (1998), 365–372.
DOI 10.1023/A:1022801907138
[21] J. Rachůnek:
$\mathop {\text{MV}}$-algebras are categorically equivalent to a class of DRl$_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441.
MR 1667115
[22] J. Rachůnek:
Ordered prime spectra of bounded $\mathop {\text{DRl}}$-monoids. Math. Bohem. 125 (2000), 505–509.
MR 1802299
[23] J. Rachůnek:
A duality between algebras of basic logic and bounded representable $\mathop {\text{DRl}}$-monoids. Math. Bohem. 126 (2001), 561–569.
MR 1970259
[25] J. Rachůnek:
Prime spectra of non-commutative generalizations of $\mathop {\text{MV}}$-algebras. Algebra Univers. 48 (2002), 151–169.
DOI 10.1007/PL00012447 |
MR 1929902