Article
Keywords:
$A^k$-domains of holomorphy; $A^k$-convexity
Summary:
For a domain $\Omega \subset {\mathbb{C}}^n$ let $H(\Omega )$ be the holomorphic functions on $\Omega $ and for any $k\in \mathbb{N}$ let $A^k(\Omega )=H(\Omega )\cap C^k(\overline{\Omega })$. Denote by ${\mathcal{A}}_D^k(\Omega )$ the set of functions $f\: \Omega \rightarrow [0,\infty )$ with the property that there exists a sequence of functions $f_j\in A^k(\Omega )$ such that $\lbrace |f_j|\rbrace $ is a nonincreasing sequence and such that $ f(z)=\lim _{j\rightarrow \infty }|f_j(z)|$. By ${\mathcal{A}}_I^k(\Omega )$ denote the set of functions $f\: \Omega \rightarrow (0,\infty )$ with the property that there exists a sequence of functions $f_j\in A^k(\Omega )$ such that $\lbrace |f_j|\rbrace $ is a nondecreasing sequence and such that $ f(z)=\lim _{j\rightarrow \infty }|f_j(z)|$. Let $k\in \mathbb{N}$ and let $\Omega _1$ and $\Omega _2$ be bounded $A^k$-domains of holomorphy in $\mathbb{C}^{m_1}$ and $\mathbb{C}^{m_2}$ respectively. Let $g_1\in {\mathcal{A}}_D^k(\Omega _1)$, $g_2\in {\mathcal{A}}_I^k(\Omega _1)$ and $h\in {\mathcal{A}}_D^k(\Omega _2)\cap {\mathcal{A}}_I^k(\Omega _2)$. We prove that the domains $\Omega =\left\rbrace (z,w)\in \Omega _1\times \Omega _2\: g_1(z)<h(w)<g_2(z)\right\lbrace $ are $A^k$-domains of holomorphy if $\mathop {\mathrm int}\overline{\Omega }=\Omega $. We also prove that under certain assumptions they have a Stein neighbourhood basis and are convex with respect to the class of $A^k$-functions. If these domains in addition have $C^1$-boundary, then we prove that the $A^k$-corona problem can be solved. Furthermore we prove two general theorems concerning the projection on ${\mathbb{C}}^n$ of the spectrum of the algebra $A^k$.
References:
[1] Hans J. Bremermann:
Über die Äquivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete im Raum von $n$ komplexen Veränderlichen. Math. Ann. 128 (1954), 63–91.
DOI 10.1007/BF01360125 |
MR 0071088
[3] Henri Cartan, Peter Thullen:
Zur Theorie der Singularitäten der Funktionen mehrerer komplexen Veränderlichen: Regularitäts- und Konvergenzbereiche. Math. Ann 106 (1932), 617–647.
DOI 10.1007/BF01455905 |
MR 1512777
[4] Theodore W. Gamelin:
Uniform algebras. Prentice-Hall Inc., Englewood Cliffs, N. J., 1969.
MR 0410387
[7] François Norguet:
Sur les domaines d’holomorphie des fonctions uniformes de plusieurs variables complexes. (Passage du local au global.). Bull. Soc. Math. France 82 (1954), 137–159.
DOI 10.24033/bsmf.1448 |
MR 0071087
[9] Boris V. Shabat:
Introduction to complex analysis. Part II, American Mathematical Society, Providence, RI, 1992, Functions of several variables, Translated from the third (1985) Russian edition by J. S. Joel.
MR 1192135
[10] Nessim Sibony:
Prolongement analytique des fonctions holomorphes bornées. C. R. Acad. Sci. Paris Sér. A–B 275 (1972), A973–A976.
MR 0318515
[11] Peter Thullen:
Zur Theorie der Funktionen zweier komplexer Veränderlichen. Die Regularitätshullen. Math. Ann. 106 (1932), 64–72.
DOI 10.1007/BF01455877 |
MR 1512749