[1] P. Aiena:
Fredholm Theory and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, 2004.
MR 2070395
[4] M. Amouch:
Generalized $a$-Weyl’s theorem and the single-valued extension property. Extracta. Math. 21 (2006), 51–65.
MR 2258341 |
Zbl 1123.47005
[6] M. Berkani, N. Castro, S. V. Djordjevic:
Single valued extension property and generalized Weyl’s theorem. Math. Bohem. 131 (2006), 29–38.
MR 2211001
[8] M. Berkani, J. J. Koliha:
Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged) 69 (2003), 359–376.
MR 1991673
[9] M. Berkani, M. Sarih:
On semi B-Fredholm operators. Glasgow Math. J. 43 (2001), 457–465.
MR 1878588
[18] K. B. Laursen, M. M. Neumann:
An Introduction to Local Spectral Theory. Clarendon, Oxford, 2000.
MR 1747914
[21] M. Mbekhta:
Résolvant généralisé et théorie spectrale. J. Operator Theory 21 (1989), 69–105.
MR 1002122 |
Zbl 0694.47002
[24] V. Rakočević:
On the essential approximate point spectrum II. Mat. Vesnik 36 (1984), 89–97.
MR 0880647
[26] V. Rakočević:
Operators obeying $a$-Weyl’s theorem. Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919.
MR 1030982
[27] H. Weyl:
Über beschränkte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo 27 (1909), 373–392.
DOI 10.1007/BF03019655
[28] H. Zguitti:
A note on generalized Weyl’s theorem. J. Math. Anal. Appl. 324 (2006), 992–1005.
MR 2201769 |
Zbl 1101.47002