[2] J. R. Carrington, F. Harary, T. W. Haynes:
Changing and unchanging the domination number of a graph. J. Combin. Math. Combin. Comput. 9 (1991), 57–63.
MR 1111839
[5] G. H. Fricke, T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, R. C. Laskar:
Excellent trees. Bull. Inst. Comb. Appl. 34 (2002), 27–38.
MR 1880562
[7] W. Goddard, T. Haynes, D. Knisley:
Hereditary domination and independence parameters. Discuss. Math. Graph Theory. 24 (2004), 239–248.
DOI 10.7151/dmgt.1228 |
MR 2120566
[8] T. W. Haynes, S. T. Hedetniemi, P. J. Slater:
Domination in Graphs. Marcel Dekker, Inc., New York, NY, 1998.
MR 1605685
[9] T. W. Haynes, S. T. Hedetniemi, P. J. Slater:
Domination in Graphs: Advanced Topics. Marcel Dekker, Inc., New York, NY, 1998.
MR 1605685
[13] O. Ore:
Theory of Graphs. Amer. Math. Soc. Providence, RI, 1962.
Zbl 0105.35401
[14] V. D. Samodivkin:
Minimal acyclic dominating sets and cut-vertices. Math. Bohem. 130 (2005), 81–88.
MR 2128361 |
Zbl 1112.05080
[15] V. D. Samodivkin:
Partitioned graphs and domination related parameters. Annuaire Univ. Sofia Fac. Math. Inform. 97 (2005), 89–96.
MR 2191872
[16] E. Sampathkumar, P. S. Neeralagi:
Domination and neighborhood critical fixed, free and totally free points. Sankhyā 54 (1992), 403–407.
MR 1234719
[18] P. D. Vestergaard, B. Zelinka:
Cut-vertices and domination in graphs. Math. Bohem. 120 (1995), 135–143.
MR 1357598