Article
Keywords:
decay rates; Navier-Stokes equations
Summary:
This paper is concerned with optimal lower bounds of decay rates for solutions to the Navier-Stokes equations in $\mathbb{R}^n$. Necessary and sufficient conditions are given such that the corresponding Navier-Stokes solutions are shown to satisfy the algebraic bound \[ \Vert u(t) \Vert \ge (t+1)^{-\frac{n+4}{2}}. \]
References:
[2] Y. Fujigaki, T. Miyakawa: Asymptotic profiles of nonstationary incompressible NavierStokes flows in ${\mathbb{R}}^n$. Preprint, Kobe University, 2000.
[3] R. Kajikiya, T. Miyakawa:
On $L^2$ decay of weak solutions of the Navier-Stokes equations in ${\mathbb{R}}^n$. Math. Z. 192 (1986), 135–148.
DOI 10.1007/BF01162027 |
MR 0835398
[4] T. Miyakawa:
Application of Hardy space techniques to the time-decay problem for incompressible Navier-Stokes flows in ${\mathbb{R}}^n$. Funkcial. Ekvac. 41 (1998), 383–434.
MR 1676881
[5] M. E. Schonbek:
$L^2$ decay for weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 88 (1985), 209–222.
DOI 10.1007/BF00752111 |
MR 0775190
[9] M. E. Schonbek:
On decay of solutions to the Navier-Stokes equations. Applied Nonlinear Analysis, A. Sequeira, H. Beirao da Veiga, J. H. Videman (eds.), Kluwer/Plenum, New York, 1999, pp. 505–512.
MR 1727469 |
Zbl 0954.35131
[10] M. Wiegner:
Decay results for weak solutions of the Navier-Stokes equations in ${\mathbb{R}}^n$. J. London Math. Soc. 35 (1987), 303–313.
MR 0881519