Previous |  Up |  Next

Article

Title: The Picone identity for a class of partial differential equations (English)
Author: Došlý, Ondřej
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 4
Year: 2002
Pages: 581-589
Summary lang: English
.
Category: math
.
Summary: The Picone-type identity for the half-linear second order partial differential equation \[ \sum _{i=1}^n\frac{\partial }{\partial x_i} \Phi \bigg (\frac{\partial u}{\partial x_i}\bigg )+c(x)\Phi (u)=0,\quad \Phi (u):=|u|^{p-2}u,\ p>1, \] is established and some applications of this identity are suggested. (English)
Keyword: Picone’s identity
Keyword: half-linear PDE
Keyword: $p$-Laplacian
Keyword: variational technique
MSC: 35J20
MSC: 35J60
idZBL: Zbl 1074.35521
idMR: MR1942643
DOI: 10.21136/MB.2002.133959
.
Date available: 2009-09-24T22:05:23Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133959
.
Reference: [A-H-1] W. Allegretto, Y. X. Huang: A Picone’s identity for the $p$-Laplacian and applications.Nonlin. Anal. 32 (1998), 819–830. MR 1618334, 10.1016/S0362-546X(97)00530-0
Reference: [A-H-2] W. Allegretto, Y. X. Huang: Principal eigenvalues and Sturm comparison via Picone’s identity.J. Differ. Equations 156 (1999), 427–438. MR 1705379, 10.1006/jdeq.1998.3596
Reference: [B] M. Bohner: Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions.J. Math. Anal. Appl. 199 (1996), 804–826. Zbl 0855.39018, MR 1386607
Reference: [G-B-1] G. Bognár: A lower bound for smallest eigenvalue of some nonlinear eigenvalue problems on convex domains in two dimensions.Appl. Math. 51 (1993), 277–288. MR 1279006
Reference: [G-B-2] G. Bognár: On the solution of some nonlinear boundary value problem.Publ. Univ. Miskolc, Ser. D, Nat. Sci. Math. 36 (1995), 13–22.
Reference: [G-B-3] G. Bognár: Existence theorems for eigenvalues of a nonlinear eigenvalue problem.Commun. Appl. Nonlinear Anal. 4 (1997), 93–102.
Reference: [Diaz] J. I. Díaz: Nonlinear Partial Differential Equations and Free Boundaries.Vol I. Elliptic Equations, Pitman, London, 1985. MR 0853732
Reference: [D-1] O. Došlý: Oscillation criteria for half-linear second order differential equations.Hiroshima Math. J. 28 (1998), 507–521. MR 1657543, 10.32917/hmj/1206126680
Reference: [D-2] O. Došlý: Methods of oscillation theory of half-linear second order differential equations.Czechoslovak Math. J. 50 (2000), 657–671. MR 1777486, 10.1023/A:1022854131381
Reference: [D-M] O. Došlý, R. Mařík: Nonexistence of positive solutions of PDE’s with $p$-Laplacian.Acta Math. Hungar. 90 (2001), 89–107. MR 1910321, 10.1023/A:1006739909182
Reference: [D-K-N] P. Drábek, A. Kufner, F. Nicolosi: Nonlinear Elliptic Equations—Singular and Degenerate Case.University of West Bohemia Press, Plzeň, 1996.
Reference: [D] D. R. Dunninger: A Sturm comparison theorem for some degenerate quasilinear eliptic operators.Boll. UMI 9 (1995), 117–121. MR 1324611
Reference: [J-K] J. Jaroš, T. Kusano: A Picone type identity for second order half-linear differential equations.Acta Math. Univ. Comen. 68 (1999), 117–121. MR 1711081
Reference: [J-K-Y] J. Jaroš, T. Kusano, N. Yosida: A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of the second order.Nonlinear Anal. TMA 40 (2000), 381–395. MR 1768900
Reference: [K-1] K. Kreith: Oscillation Theory.Lectures Notes in Math. No. 324, Springer, Berlin, 1973. Zbl 0258.35001
Reference: [K-2] K. Kreith: Picone’s identity and generalizations.Rend. Mat. 8 (1975), 251–261. Zbl 0341.34002, MR 0374561
Reference: [K-P] W. C. Kelley, A. C. Peterson: Difference Equations: An Introduction with Applications.Acad. Press, San Diego, 1991. MR 1142573
Reference: [M-1] R. Mařík: Oscillation criteria for PDE with $p$-Laplacian via the Riccati technique.J. Math. Anal. Appl. 248 (2000), 290–308. MR 1772598, 10.1006/jmaa.2000.6901
Reference: [M-2] R. Mařík: Oscillation criteria for the Schrödinger PDE.Adv. Math. Sci. Appl. 10 (2000), 495–511. MR 1807439
Reference: [M] D. J. Mirzov: Asymptotic Properties of Solutions of Nonlinear Nonautonomous Ordinary Differential Systems.Adygea, Maikop, 1993.
Reference: [M-P] W. F. Moss, J. Piepenbrick: Positive solutions of elliptic equations.Pacific J. Math. 75 (1978), 219–226. MR 0500041, 10.2140/pjm.1978.75.219
Reference: [M-Pf-1] E. Müller-Pfeiffer: On the existence of nodal domain for elliptic differential operators.Proc. Roy. Soc. Edinburgh 94A (1983), 287–299. MR 0709722
Reference: [M-Pf-2] E. Müller-Pfeiffer: An extension of the Sturm-Picone theorem to elliptic differential equations.Proc. Roy. Soc. Edinburgh 97A (1984), 209–215. MR 0751193
Reference: [Pic] M. Picone: Sui valori eccezionalle di un parametro da cui dipende un’ equatione differenzialle lineare del secondo ordine.Ann. Scuola Norm. Sup. Pisa 11 (1910), 1–141.
Reference: [R] R. T. Rockafeller: Convex Analysis.Princeton, 1970.
Reference: [Sch] U. W. Schminke: The lower spectrum of Schrödinger operators.Arch. Rat. Mech. Anal. 75 (1981), 147–155. MR 0605526, 10.1007/BF00250476
Reference: [Sw] C. A. Swanson: Picone’s identity.Rend Mat. 8 (1975), 373–397. Zbl 0327.34028, MR 0402188
.

Files

Files Size Format View
MathBohem_127-2002-4_8.pdf 336.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo