Previous |  Up |  Next

Article

Title: Induced-paired domatic numbers of graphs (English)
Author: Zelinka, Bohdan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 4
Year: 2002
Pages: 591-596
Summary lang: English
.
Category: math
.
Summary: A subset $D$ of the vertex set $V(G)$ of a graph $G$ is called dominating in $G$, if each vertex of $G$ either is in $D$, or is adjacent to a vertex of $D$. If moreover the subgraph $<D>$ of $G$ induced by $D$ is regular of degree 1, then $D$ is called an induced-paired dominating set in $G$. A partition of $V(G)$, each of whose classes is an induced-paired dominating set in $G$, is called an induced-paired domatic partition of $G$. The maximum number of classes of an induced-paired domatic partition of $G$ is the induced-paired domatic number $d_{\text{ip}}(G)$ of $G$. This paper studies its properties. (English)
Keyword: dominating set
Keyword: induced-paired dominating set
Keyword: induced-paired domatic number
MSC: 05C35
MSC: 05C69
idZBL: Zbl 1003.05078
idMR: MR1942644
DOI: 10.21136/MB.2002.133954
.
Date available: 2009-09-24T22:05:32Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133954
.
Reference: [1] E. J. Cockayne, S. T. Hedetniemi: Towards a theory of domination in graphs.Networks 7 (1977), 247–261. MR 0483788, 10.1002/net.3230070305
Reference: [2] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs.Marcel Dekker, New York, 1998. MR 1605684
Reference: [3] D. S. Studer, T. W. Haynes, L. M. Lawson: Induced-paired domination in graphs.Ars Combinatoria 57 (2000), 111–128. MR 1796633
Reference: [4] B. Zelinka: Adomatic and idomatic numbers of graphs.Math. Slovaca 33 (1983), 99–103. Zbl 0507.05059, MR 0689285
.

Files

Files Size Format View
MathBohem_127-2002-4_9.pdf 265.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo