[1] Bihari I.:
A generalization of a lemma of Bellman and its applications to uniqueness problems of differential equations. Acta Math. Sci. Hung. 7 (1956), 71–94.
DOI 10.1007/BF02022967 |
MR 0079154
[2] Fabry C., Mawhin J., Nkashama M. N.:
A multiplicity result for periodic solutions of forced nonlinear boundary value problems. Bull. London Math. Soc. 18 (1986), 173–186.
DOI 10.1112/blms/18.2.173 |
MR 0818822
[3] Gaines R., Mawhin J.:
Coincidence Degree and Nonlinear Differential Equations. Lect. Notes Math. 568 Springer, Berlin, 1977.
DOI 10.1007/BFb0089537 |
MR 0637067
[4] Gossez J., Omari P.:
Periodic solutions of a second order ordinary differential equation: A necessary and sufficient condition for nonresonance. J. Differ. Equations 94 (1991), 67–82.
DOI 10.1016/0022-0396(91)90103-G |
MR 1133541
[5] Habets P., Omari P.:
Existence and localization of solutions of second order elliptic boundary value problem using lower and upper solutions in the reversed order. Topol. Methods Nonlinear Anal. 8 (1996), 25–56.
DOI 10.12775/TMNA.1996.020 |
MR 1485756
[8] Mawhin J.:
Points fixes, points critiques et problèmes aux limites. Sémin. Math. Sup. no. 92, Presses Univ. Montréal, Montréal, 1985.
MR 0789982 |
Zbl 0561.34001
[9] Mawhin J., Willem M.:
Multiple solutions of the periodic boundary value problem for some forced pendulum type equations. J. Differ. Equations 52 (1984), 264–287.
DOI 10.1016/0022-0396(84)90180-3 |
MR 0741271
[11] Omari P.: Non-ordered lower and upper solutions and solvability of the periodic problem for the Liénard and the Raleigh equations. Rend. Inst. Mat. Univ. Trieste 20 (1988), 54–64.
[12] Rachůnková I.:
Multiplicity results for four-point boundary value problems. Nonlinear Anal., Theory Methods Appl. 18 (1992), 497–505.
DOI 10.1016/0362-546X(92)90016-8
[13] Rachůnková I.:
On the existence of two solutions of the periodic problem for the ordinary second order differential equation. Nonlinear Anal., Theory Methods Appl. 22 (1994), 1315–1322.
DOI 10.1016/0362-546X(94)90113-9 |
MR 1280199
[14] Rachůnková I.:
Upper and lower solutions and topological degree. J. Math. Anal. Appl. 234 (1999), 311–327.
DOI 10.1006/jmaa.1999.6375
[17] Rudolf B.:
Method of lower and upper solutions for a generalized boundary value problem. Archivum Mathematicum (Brno) 36 (2000), 595–602.
MR 1822829 |
Zbl 1090.34520
[18] Scorza Dragoni G.: Il problema dei valori ai limiti studiato il grande per gli integrali di una equazione differenziale del secondo ordine. Giorn. Mat. Battagliani, III. Ser. 69 (1931), 77–112.
[19] Šeda V.:
On some nonlinear boundary value problems for ordinary differential equations. Archivum Mathematicum (Brno) 25 (1989), 207–222.
MR 1188065