Previous |  Up |  Next

Article

Keywords:
Henstock-Kurzweil integral; bounded variation in the sense of Hardy-Krause; integration by parts
Summary:
It is shown that if $g$ is of bounded variation in the sense of Hardy-Krause on ${\mathop {\prod }\limits _{i=1}^{m}} [a_i, b_i]$, then $g \chi _{ _{{\mathop {\prod }\limits _{i=1}^{m}} (a_i, b_i)}}$ is of bounded variation there. As a result, we obtain a simple proof of Kurzweil’s multidimensional integration by parts formula.
References:
[1] J. Kurzweil: On multiplication of Perron integrable functions. Czech. Math. J 23 (1973), 542–566. MR 0335705 | Zbl 0269.26007
[2] Tuo-Yeong Lee, Tuan Seng Chew, Peng Yee Lee: Characterisation of multipliers for the double Henstock integrals. Bull. Austral. Math. Soc. 54 (1996), 441–449. DOI 10.1017/S0004972700021857 | MR 1419607
[3] Tuo-Yeong Lee: Multipliers for some non-absolute integrals in the Euclidean spaces. Real Anal. Exchange 24 (1998/99), 149–160. MR 1691742
[4] Tuo-Yeong Lee: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space. Proc. London Math. Soc. 87 (2003), 677–700. MR 2005879
[5] Tuo-Yeong Lee: Every absolutely Henstock-Kurzweil integrable function is McShane integrable: an alternative proof. Rocky Mountain J. Math. 34 (2004), 1353–1365. DOI 10.1216/rmjm/1181069805 | MR 2095582
[6] Tuo-Yeong Lee: A full characterization of multipliers for the strong $\rho $-integral in the Euclidean space. Czech. Math. J. 54 (2004), 657–674. DOI 10.1007/s10587-004-6415-7 | MR 2086723
[7] Tuo-Yeong Lee: A characterisation of multipliers for the Henstock-Kurzweil integral. Math. Proc. Cambridge Philos. Soc. 138 (2005), 487–492. DOI 10.1017/S030500410500839X | MR 2138575
[8] Tuo-Yeong Lee: Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space. Czech. Math. J. 55 (2005), 625–637. DOI 10.1007/s10587-005-0050-9 | MR 2153087
[9] Tuo-Yeong Lee: The Henstock variational measure, Baire functions and a problem of Henstock. Rocky Mountain J. Math. 35 (2005), 1981–1997. MR 2210644
[10] Tuo-Yeong Lee: On the dual space of ${\text{BV}}$-integrable functions in Euclidean space. Real Anal. Exchange 30 (2004/2005), 323–328. DOI 10.14321/realanalexch.30.1.0323 | MR 2127537
[11] Tuo-Yeong Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral II. J. Math. Anal. Appl. 323 (2006), 741–745. DOI 10.1016/j.jmaa.2005.10.045 | MR 2262241
[12] Tuo-Yeong Lee: Multipliers for generalized Riemann integrals in the real line. Math. Bohem. 131 (2006), 161–166. MR 2242842
[13] Tuo-Yeong Lee: A Fubini’s theorem for generalized Riemann integrals. Preprint.
[14] G. Q. Liu: The dual of the Henstock-Kurzweil space. Real Anal. Exchange 22 (1996/97), 105–121. MR 1433600
[15] S. Lojasiewicz: An Introduction to the Theory of Real Functions. John Wiley & Sons, Ltd., Chichester, 1988. MR 0952856 | Zbl 0653.26001
[16] M. S. Macphail: Functions of bounded variation in two variables. Duke Math. J. 8 (1941), 215–222. DOI 10.1215/S0012-7094-41-00815-3 | MR 0004285 | Zbl 0025.15302
[17] P. Mikusiński, K. Ostaszewski: The space of Henstock integrable functions II. New integrals, (P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer, eds.), Lecture Notes in Math. 1419 (Springer, Berlin, Heideberg, New York, 1990), 136–149. MR 1051926
[18] K. M. Ostaszewski: The space of Henstock integrable functions of two variables. Internat. J. Math. and Math. Sci. 11 (1988), 15–22. DOI 10.1155/S0161171288000043 | MR 0918213 | Zbl 0662.26003
[19] W. H. Young: On multiple integration by parts and the second theorem of the mean. Proc. London Math. Soc. 16 (1918), 273–293.
[20] W. H. Young, G. C. Young: On the discontinuities of monotone functions of several variables. Proc. London Math. Soc. 22 (1924), 124–142. MR 1575698
[21] S. K. Zaremba: Some applications of multidimensional integration by parts. Ann. Pol. Math. 21 (1968), 85–96. DOI 10.4064/ap-21-1-85-96 | MR 0235731 | Zbl 0174.08402
Partner of
EuDML logo