Previous |  Up |  Next

Article

Keywords:
neighbourhood assignment; $D$-space; dually discrete space; discrete kernel; scattered space; paracompactness; GO-space
Summary:
A {\it neighbourhood assignment\/} in a space $X$ is a family $\Cal O= \{O_x:x\in X\}$ of open subsets of $X$ such that $x\in O_x$ for any $x\in X$. A set $Y\subseteq X$ is {\it a kernel of $\Cal O$\/} if $\Cal O(Y)=\bigcup\{O_x:x\in Y\}=X$. If every neighbourhood assignment in $X$ has a closed and discrete (respectively, discrete) kernel, then $X$ is said to be a $D$-space (respectively a dually discrete space). In this paper we show among other things that every GO-space is dually discrete, every subparacompact scattered space and every continuous image of a Lindelöf $P$-space is a $D$-space and we prove an addition theorem for metalindelöf spaces which answers a question of Arhangel'skii and Buzyakova.
References:
[1] Alas O.T., Junqueira L., Wilson R.G.: Dually discrete spaces. Topology Appl. 155 (2008), 13 1420--1425. DOI 10.1016/j.topol.2008.04.003 | MR 2427413 | Zbl 1169.54010
[2] Alas O.T., Sanchis M., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: Irresolvable and submaximal spaces: homogeneity versus $\sigma$-discreteness and new ZFC examples. Topology Appl. 107 (2000), 259--273. MR 1779814 | Zbl 0984.54002
[3] Alas O.T., Tkachuk V.V., Wilson R.G.: Covering properties and neighbourhood assignments. Topology Proc. 30 1 (2006), 25--38. MR 2280656
[4] Arhangel'skii A.V.: D-spaces and finite unions. Proc. Amer. Math. Soc. 132 7 (2004), 2163--2170. DOI 10.1090/S0002-9939-04-07336-8 | MR 2053991 | Zbl 1045.54009
[5] Arhangel'skii A.V., Buzyakova R.Z.: Addition theorems and $D$-spaces. Comment. Math. Univ. Carolin. 43 (2002), 653--663. MR 2045787 | Zbl 1090.54017
[6] Arhangel'skii A.V., Collins P.J.: On submaximal spaces. Topology Appl. 64 3 (1995), 219--241. DOI 10.1016/0166-8641(94)00093-I | MR 1342519
[7] Buzyakova R.Z., Tkachuk V.V., Wilson R.G.: A quest for nice kernels of neighbourhood assignments. Comment. Math. Univ. Carolin. 48 4 (2007), 689--697. MR 2375169 | Zbl 1199.54141
[8] van Douwen E.K., Lutzer D.: A note on paracompactness in generalized ordered spaces. Proc. Amer. Math. Soc. 125 4 (1997), 1237--1245. DOI 10.1090/S0002-9939-97-03902-6 | MR 1396999 | Zbl 0885.54023
[9] van Douwen E., Pfeffer W.F.: Some properties of the Sorgenfrey line and other spaces. Pacific J. Math. 81 2 (1979), 371--377. DOI 10.2140/pjm.1979.81.371 | MR 0547605
[10] van Douwen E., Wicke H.H.: A real, weird topology on the reals. Houston J. Math. 3 1 (1977), 141--152. MR 0433414 | Zbl 0345.54036
[11] Eisworth T.: On $D$-spaces. in Open Problems in Topology, II, ed. Elliott Pearl, Elsevier, Amsterdam, 2007. MR 2367385
[12] Engelking R.: General Topology. Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[13] Galvin F.: Indeterminacy of point-open games. Bull. Acad. Polon. Sci., Sér. Math. 26 5 (1978), 445--449. MR 0493925 | Zbl 0392.90101
[14] Gruenhage G.: A note on $D$-spaces. Topology Appl. 153 (2006), 2229--2240. MR 2238727 | Zbl 1101.54029
[15] Lutzer D.: Ordinals and paracompactness in ordered spaces. Proceedings Topo72, General Topology and its Applications, Pittsburgh International Conference, 1972, Lecture Notes in Mathematics 372, Springer, Berlin, 1974. MR 0362250 | Zbl 0298.54015
[16] van Mill J., Tkachuk V.V., Wilson R.G.: Classes defined by stars and neighbourhood assignments. Topology Appl. 154 (2007), 2127--2134. DOI 10.1016/j.topol.2006.03.029 | MR 2324924 | Zbl 1131.54022
[17] Telgársky R.: Spaces defined by topological games. Fund. Math. 88 (1975), 193--223. MR 0380708
[18] Telgársky R.: Spaces defined by topological games II. Fund. Math. 116 (1983), 189--207. MR 0716219
[19] Uspenskij V.V.: The frequency spectrum of function spaces (in Russian). Vestnik. Moskov. Univ. Ser. I Mat. 37 1 (1982), 31--35.
Partner of
EuDML logo