Article
Keywords:
reflexive Banach space; $r$-reflexive Banach space; Asplund Banach space
Summary:
A Banach space $X$ is called {\it $r$-reflexive\/} if for any cover $\Cal U$ of $X$ by weakly open sets there is a finite subfamily $\Cal V\subset\Cal U$ covering some ball of radius 1 centered at a point $x$ with $\|x\|\leq r$. We prove that an infinite-dimensional separable Banach space $X$ is $\infty$-reflexive ($r$-reflexive for some $r\in \Bbb N$) if and only if each $\varepsilon $-net for $X$ has an accumulation point (resp., contains a non-trivial convergent sequence) in the weak topology of $X$. We show that the quasireflexive James space $J$ is $r$-reflexive for no $r\in \Bbb N$. We do not know if each $\infty$-reflexive Banach space is reflexive, but we prove that each separable $\infty$-reflexive Banach space $X$ has Asplund dual. As a by-product of the proof we obtain a covering characterization of the Asplund property of Banach spaces.
References:
[Ba] Banakh I.:
On Banach spaces possessing an $\varepsilon $-net without weak limit points. Math. Methods and Phys. Mech. Fields 43 3 (2000), 40--43.
MR 1968634
[BPZ] Banakh T., Plichko A., Zagorodnyuk A.:
Zeros of continuous quadratic functionals on non-separable Banach spaces. Colloq. Math. 100 (2004), 141--147.
DOI 10.4064/cm100-1-13 |
MR 2079354
[CG] Castillo J., González M.:
Three-space problems in Banach space theory. Lecture Notes in Mathematics, 1667, Springer, Berlin, 1997.
MR 1482801
[Dis] Diestel J.:
Sequences and Series in Banach Spaces. Springer, New York, 1984.
MR 0737004
[Fab] Fabian M.:
Gateaux Differentiability of Convex Functions and Topology. John Wiley & Sons, Inc., New York, 1997.
MR 1461271 |
Zbl 0883.46011
[HHZ] Habala P., Hájek P., Zizler V.: Introduction to Banach spaces. Matfyzpress, Praha, 1996.
[OR] Odell E., Rosenthal H.P.:
A double-dual characterization of separable Banach spaces containing $l^{1}$. Israel J. Math. 20 3--4 (1975), 375--384.
DOI 10.1007/BF02760341 |
MR 0377482