Previous |  Up |  Next

Article

Keywords:
non-archimedean Banach space; Shnirelman integral; spectrum; unbounded linear operator; functional calculus
Summary:
This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on $c_0$. For that, our first task consists of introducing a new class of linear operators denoted $W(c_0({J},\omega,\Bbb K))$ and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.
References:
[1] Attimu D.: Linear operators on some non-archimedean Hilbert spaces and their spectral theory. PhD Thesis, Howard University, Washington DC, 2008. MR 2399075
[2] Attimu D., Diagana T.: Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II. Comment. Math. Univ. Carolin. 48 (2007), 3 431--442. MR 2374125 | Zbl 1199.47334
[3] Baker R.: A certain $p$-adic spectral theorem. arXiv.math /070353901 [MATH.FA] (2007).
[4] Conway J.B.: A Course in Functional Analysis. Graduate Texts in Mathematics 96, Springer, New York, 1985. MR 0768926 | Zbl 0706.46003
[5] Davies E.B.: Spectral Theory and Differential Operators. Cambridge University Press, Cambridge, 1995. MR 1349825 | Zbl 0893.47004
[6] Diagana T.: Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications. Ann. Math. Blaise Pascal 12 (2005), 1 205--222. DOI 10.5802/ambp.203 | MR 2126449 | Zbl 1087.47061
[7] Diagana T.: Erratum to: ``Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and Applications". Ann. Math. Blaise Pascal 13 (2006), 105--106. DOI 10.5802/ambp.217 | MR 2233015
[8] Diagana T.: Representation of bilinear forms in non-archimedean Hilbert space by linear operators. Comment. Math. Univ. Carolin. 47 (2006), 4 695--705. MR 2337423 | Zbl 1150.47408
[9] Diagana T.: An Introduction to Classical and $p$-adic Theory of Linear Operators and Applications. Nova Science Publishers, New York, 2006. MR 2269328 | Zbl 1118.47323
[10] Diarra B., Ludkovsky S.: Spectral integration and spectral theory for non-Archimedean Banach spaces. Int. J. Math. Math. Sci. 31 (2002), 7 421--442. DOI 10.1155/S016117120201150X | MR 1926812 | Zbl 0999.47063
[11] Diarra B.: An Operator on Some Ultrametric Hilbert spaces. J. Anal. 6 (1998), 55--74. MR 1671148 | Zbl 0930.47049
[12] Diarra B.: Geometry of the $p$-adic Hilbert spaces. preprint, 1999.
[13] Kalish G.: On $p$-adic Hilbert spaces. Ann. of Math. 48 (1947), 2 180--192. DOI 10.2307/1969224 | MR 0019227
[14] Kato T.: Perturbation Theory for Linear Operators. Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer, New York, 1966. MR 0203473 | Zbl 0836.47009
[15] Khrennikov A.Y.: $p$-Adic Valued Distributions in Mathematical Physics. Mathematics and Its Applications, Vol. 309, Kluwer Academic, Dordrecht, 1994. MR 1325924 | Zbl 0833.46061
[16] Koblitz N.: $p$-adic Analysis: a Short Course on Recent Work. Cambridge University Press, Cambridge, 1980. MR 0591682 | Zbl 0439.12011
[17] Krasner M.: Prolongement analytique uniforme et multiforme dans les corps valués complets. Colloque. Int. CNRS 143, Paris, 1966, pp. 97--142. MR 0204404 | Zbl 0139.26202
[18] Ochsenius H., Schikhof W.H.: Banach Spaces Over Fields with an Infinite Rank Valuation. $p$-adic Functional Analysis (Poznan, 1998), Marcel Dekker, New York, 1999, pp. 233--293. MR 1703500 | Zbl 0938.46056
[19] van Rooij A.C.M.: Non-Archimedean Functional Analysis. Marcel Dekker Inc, New York, 1978. MR 0512894 | Zbl 0396.46061
[20] Serre J.-P.: Endomorphismes complétement continus des espaces de Banach $p$-adiques. Inst. Hautes Études Sci. Publ. Math. 12 (1962), 69--85. DOI 10.1007/BF02684276 | MR 0144186
[21] Shnirel'man L.G.: On Functions in Normed, Algebraically Closed Fields. Izv. Akad. Nauk SSSR, Ser. Mat. 2 (1938), 5--6 487--498.
[22] Shamseddine K., Berz M.: Analytical properties of power series on Levi-Civita fields. Ann. Math. Blaise Pascal 12 (2005), 2 309--329. DOI 10.5802/ambp.209 | MR 2182072 | Zbl 1087.26020
[23] Vishik M.: Non-Archimedean spectral theory. J. Soviet Math. 30 (1985), 2513--2554. DOI 10.1007/BF02249122 | MR 0770941
Partner of
EuDML logo