Article
Keywords:
Positive solutions; Fredholm integral equations; cone; boundary value problems; fixed point theorem.
Summary:
We study the existence of positive solutions of the integral equation \[ x(t) = \mu \int _0^1 k(t, s) f(s, x(s), x^{\prime }(s), \ldots , x^{(n-1)} (s))\, ds, \quad n \ge 2 \] in both $ C^{n-1} [0, 1] $ and $ W^{n-1, p} [0, 1] $ spaces, where $ p \ge 1 $ and $ \mu > 0 $. Throughout this paper $k$ is nonnegative but the nonlinearity $f$ may take negative values. The Krasnosielski fixed point theorem on cone is used.
References:
[1] Agarwal R. P., Grace S. R., O’Regan D.:
Existence of positive solutions of semipositone Fredholm integral equation. Funkciałaj Equaciaj 45 (2002), 223–235.
MR 1948600
[2] Agarwal R. P., O’Regan D.: Infinite Interval Problems For Differential, Difference, Integral Equations. :
Kluwer Acad. Publishers, Dordrecht, Boston, London. 2001.
MR 1845855
[3] Agarwal R. P., O’Regan D., Wang J. Y.: Positive Solutions of Differential, Difference, Integral Equations. :
Kluwer Academic Publishers, Dordrecht, Boston, London. 1999.
MR 1680024
[4] Deimling K.: Nonlinear Functional Analysis. :
Springer, New York. 1985.
MR 0787404
[5] Guo D., Lakshmikannthan V.: Nonlinear Problems in Abstract Cones. :
Academic Press, San Diego. 1988.
MR 0959889
[6] Galewski A.: On a certain generalization of the Krasnosielskii theorem. J. Appl. Anal. 1 (2003), 139–147.