Article
Keywords:
Graph; Kelly’s Lemma; Reconstruction
Summary:
We prove a converse of the well-known Kelly’s Lemma. This motivates the introduction of the general notions of $\mathcal{K}$-table, $\mathcal{K}$-congruence and control-class.
References:
[1] Bollobás B.:
Almost every graph has reconstruction number three. J. Graph Theory 14 (1990), 1–4
MR 1037416 |
Zbl 0702.05061
[2] Bondy J. A.: A Graph Reconstructor’s Manual. :
Lecture Notes LMS, vol. 166, Cambridge Univ. Press. 1991.
MR 1161466
[3] Dulio P., Pannone V.:
Trees with the same path-table. submitted.
Zbl 1118.05014
[5] Greenwell D. L., Hemminger R. L.:
Reconstructing the $n$-connected components of a graph. Aequationes Math. 9 (1973), 19–22.
MR 0384614 |
Zbl 0255.05125
[6] Harary F., Plantholt M.:
The Graph Reconstruction Number. J. Graph Theory 9 (1985), 451–454.
MR 0890233 |
Zbl 0664.05043
[8] Lauri J.:
The reconstruction of maximal planar graphs. II. Reconstruction. J. Combin. Theory, Ser. B 30, 2 (1981), 196–214.
MR 0615314 |
Zbl 0413.05036
[9] Lauri J.:
Graph reconstruction-some techniques and new problems. Ars Combinatoria, ser. B 24 (1987), 35–61.
MR 0941788 |
Zbl 0659.05068
[11] Nýdl V.:
Finite undirected graphs which are not reconstructible from their large cardinality subgraphs. Discrete Math. 108 (1992), 373–377.
MR 1189858 |
Zbl 0759.05067
[12] Tutte W. T.:
All the king’s horses. A guide to reconstruction. In: Graph Theory and Related Topics, Acad. Press, New York, 1979 (pp. 15–33).
MR 0538033 |
Zbl 0472.05046