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Abstract

We prove a converse of the well-known Kelly’s Lemma. This moti-
vates the introduction of the general notions of K-table, K-congruence
and control-class.
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1 Introduction

An Ulam-subgraph of a (finite, simple, undirected, labelled) graph G of order n
is a subgraph of order n− 1 obtained from G by deleting a vertex of G and the
edges incident to it. Such a subgraph can also be defined as a maximal induced
subgraph of G or, simply, as a subgraph induced by n− 1 vertices of G.
Thus, a graph G of order n gives rise to n distinct Ulam-subgraphs, the set

of which is sometimes called the Ulam-deck of G. We shall denote by G(v) the
Ulam-subgraph of G obtained by deleting the vertex v of G. Note that distinct
Ulam-subgraphs may be isomorphic.
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We say that two graphsX,Y have the same Ulam-deck if there is a one-to-one
correspondence between the Ulam-decks of X and Y , such that corresponding
subgraphs are isomorphic.
It is clear that two isomorphic graphs must have the same Ulam-deck. Ulam

and Kelly, in 1941, have conjectured that having the same deck is a sufficient
condition for isomorphism for all graphs of order n ≥ 3.
Since that time, the conjecture has been verified forX,Y belonging to several

classes of graphs and many other related problems have been considered (fairly
recent surveys are [2] and [9]).
In Section 2, for the benefit of a reader not too familiar with Reconstruction

Theory, we make a few remarks explaining (and improving) current terminology.
In Section 3 we state without proof Kelly’s Lemma and one of its well-known

generalizations due to Greenwell and Hemminger.
In Section 4 we prove the converse of Kelly’s Lemma, a result which—

although fairly easy to establish—does not seem to appear in the literature.
In Section 5 we define, for a given class K of graphs, the notions of K-table

of a graph G, of K-homogeneous graphs, and of K-congruent graphs. These
notions suggest that we call a class K an overall (resp. pointwise) control-class,
if two graphs X,Y are isomorphic whenever they are K-homogeneous (resp. K-
congruent). We point out that the class of paths is not a pointwise control-class
for the trees, and suggest a few classes that might be.
In Section 6 we discuss a possible strengthening of the Kelly–Ulam’s conjec-

ture.

2 Remarks on terminology and subproblems

The Kelly–Ulam’s Conjecture is stated for two arbitrary given graphs X,Y : if
X and Y have the same Ulam-deck, then they should be isomorphic.
In order to obtain partial results, the general problem has been split into

subproblems or confined to subclasses of the class of all graphs. The following
terminology has been introduced.
First of all, a graph X is called reconstructible if any graph Y having the

same Ulam-deck as X is isomorphic to X.
Thus, proving the Kelly–Ulam’s conjecture is the same as proving that any

graph of order ≥ 3 is reconstructible, and partial results regarding the Kelly–
Ulam’s conjecture may consist in proving that restricted types of graphs (or
even interesting individual graphs) are reconstructible. For example, it is easy
to prove that a regular graph is reconstructible.
Another useful definition, which generalizes the one given above, is the fol-

lowing.

Definition 1 A graph X is reconstructible within the class of graphs A (con-
taining X), if any graph Y ∈ A, having the same Ulam-deck as X, is isomorphic
to X.
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Hence, the task of proving that a given graph X is reconstructible may be
split into the following two steps, with respect to a suitably chosen class A
(containing X):

• prove that X is reconstructible within A.
• prove that an arbitrary graph Y , having the same Ulam-deck as X, must
also belong to A.

The former step is sometimes called weak-reconstructability of X, but we prefer
to call it reconstructability within A, and the latter recognizability of the class
A. If A is characterized by a property P , one also speaks of recognizability of
P . Thus, the difficulty in establishing the recognizability of a class A strongly
depends on the features of A and, presumably, it is greater when A is small.
For example, it is not known whether the class of planar graphs is recognizable.
Note that if A is the class of all graphs isomorphic to a given X, then the

recognizability of A is equivalent to the reconstructability of X.

3 Kelly’s Lemma and its generalizations

We first introduce some notation and terminology. If X and Y have the same
Ulam-deck, then, by definition, there is a one-to-one correspondence σ between
the set of the Ulam-subgraphs of X and the set of the Ulam-subgraphs of Y such
that corresponding Ulam-subgraphs are isomorphic. Since an Ulam-subgraph
contains all but one vertex, then the one-to-one correspondence σ naturally
induces another one-to-one correspondence: the correspondence π between the
missing vertices. Thus, we can say that X, Y have the same Ulam-deck if and
only if there is a bijection π : V (X) → V (Y ) such that X(v) � Y (π(v)) for all
v ∈ V (X). The bijection π will be referred to as an Ulam-congruence, and X
will be said Ulam-congruent to Y .
Let Z be a graph, v ∈ V (Z). For any graph Q, we set
(

Z
Q

)
= number of subgraphs of Z isomorphic to Q,

(
Z
Q

)
v
= number of subgraphs of Z containing vertex v isomorphic to Q.

The so-called Kelly’s Lemma is the first result regarding the Kelly-Ulam’s
conjecture that have been obtained (in [7]). It points out a consequence of the
hypothesis that two graphs are Ulam-congruent, quite remarkable in spite of
the simplicity of the proof.

Lemma 1 (Kelly’s Lemma) Let X,Y be graphs of order n. Assume that
there is a bijection π : V (X) → V (Y ) such that

(i) X(v) � Y (π(v)) for all v ∈ V (X).

Then

(ii)
(
X
Q

)
=

(
Y
Q

)
for all graphs Q of order less than n.

(iii)
(
X
Q

)
v

=
(
Y
Q

)
π(v)
for all v ∈ V (X) and all graphs Q of order less than n.
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We now record a generalization of Kelly’s Lemma due to Greenwell and
Hemminger ([5]). Let F be a class of graphs. An F-subgraph of a graph G is a
subgraph of G isomorphic to some element of F .

Lemma 2 (Greenwell–Hemminger’s Lemma) Let F be a class of graphs.
Let X,Y be Ulam-congruent graphs of order n. Assume that all F-subgraphs
of X and Y have order less than n, and that the intersection of two distinct
maximal F-subgraphs of X (and Y ) is not an F-subgraph. Then, for every
Q ∈ F , the number of maximal F-subgraphs of X isomorphic to Q is equal to
the number of maximal F-subgraphs of Y isomorphic to Q.

Remark 1 When F consists of a single graph, then the Greenweel–Hemminger’s
Lemma reduces to Kelly’s Lemma. Also, when F is the set of all subgraphs of
X of order exactly n− 1, the assumption and the conclusion coincide.

Example 1 (Greenwell and Hemminger) Let X,Y and Q be as in Fig. 1.
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1

2

3

4

Q

Figure 1: Example of the Greenweel–Hemminger’s Lemma.

Let π : vi → wi for all i. Let F be the class of all 2-connected graphs. Then
π is an Ulam-congruence from X to Y . The assumptions of the Greenwell–



The converse of Kelly’s Lemma and control-classes in graph reconstruction 29

Hemminger’s Lemma are verified since the intersection of two maximal 2-con-
nected subgraphs is not 2-connected. In both X and Y the total number of
2-con–nected maximal subgraphs isomorphic to Q equals 1. Also, there are 4
subgraphs of X isomorphic to Q containing v4: These are

H1 = {v1v4, v2v4, v1v3, v2v3, v3v4}, H2 = {v1v2, v1v3, v2v3, v1v4, v2v4},
H3 = {v4v5, v4v6, v5v7, v5v6, v6v7}, H4 = {v4v5, v4v6, v5v6, v5v8, v6v8}.

For i = 1, 2, 3, 4, no Hi is a maximal F-subgraph of X, i.e. it is a subgraph of
X which can be properly extended to a 2-connected subgraph of X.
There are 4 subgraphs of Y isomorphic to Q containing w4 = π(v4): These

are
K1 = {w5w6, w5w4, w6w4, w5w7, w6w7},
K2 = {w5w4, w5w7, w4w6, w6w7, w4w7},
K3 = {w4w5, w4w6, w5w6, w5w8, w6w8},
K4 = {w4w9, w4w10, w9w10, w9w11, w10w11}.

Note that K4 is a maximal F-subgraph of Y . Thus, this example shows that a
pointwise version of Greenwell–Hemminger’s Lemma does not hold.

Another generalization of Kelly’s Lemma is given by Tutte ([12])

4 The Converse of Kelly’s Lemma

Recall that a class of graphs is a family of graphs closed under isomorphisms. We
denote by G the class of all graphs. In the next theorem we collect the statement
of both Kelly’s Lemma and its converse and give a complete proof. Regarding
the proof of the implication (ii) ⇒ (i) (the converse of Kelly’s Lemma), the
reader may keep in mind the following example, where we have shown how the
Ulam-subgraphs are “distributed” among the subgraphs of order n − 1 of the
various sizes, i.e. number of edges (see Fig. 2).

Theorem 1 Let X,Y be graphs of order n and let K be a class of graphs. Let
π be a bijection V (X) → V (Y ). Consider the following conditions:

(i) X(v) � Y (π(v)) for all v ∈ V (X).

(ii)
(
X
Q

)
=

(
Y
Q

)
for all Q ∈ K of order less than n.

(iii)
(
X
Q

)
v

=
(
Y
Q

)
π(v)
for all v ∈ V (X) and all Q ∈ K of order less than n.

Then (i) ⇒ (ii), (i) ⇒ (iii) and (iii) ⇒ (ii). If K = G, the three conditions are
equivalent.

Proof Let
(

Z
Q

)
v′ = number of subgraphs of Z not containing the vertex v and

isomorphic to Q, and consider the auxiliary condition

(i)′ There is a bijection π : V (X) → V (Y ) such that
(
X
Q

)
v′ =

(
Y
Q

)
π(v)′

for all

v ∈ V (X) and all graphs Q ∈ K of order less than n.
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Figure 2: The lattice of the subgraphs of X of order 4. The Ulam-subgraphs
are depicted into rectangular frames.
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We prove that (i) ⇒ (i)′ for all K, and (i)′ ⇒ (i) for K = G.
Proof of (i)⇒(i)′. By (i), X(v) � Y (π(v)), hence

(
X(v)

Q

)
=

(
Y (π(v))

Q

)
for all

Q ∈ K. But since |Q| < n,
(
X
Q

)
v′ =

(
X(v)

Q

)
, and

(
Y
Q

)
π(v)′

=
(
Y (π(v))

Q

)
for all

v ∈ V (X).
Proof of (i)′⇒(i). Fix any v ∈ V (X). Assume (i)′ for K = G. Thus we can

replace X(v) for Q, thus obtaining

1 =
(

X(v)

X(v)

)
=

(
X

X(v)

)

v′
=

(
Y

X(v)

)

π(v)′
=

(
Y π(v)

X(v)

)
.

We can also replace Y π(v) for Q, obtaining
(

X(v)

Y (π(v))

)
=

(
X

Y (π(v))

)

v′
=

(
Y

Y (π(v))

)

π(v)′
=

(
Y (π(v))

Y (π(v))

)
= 1.

In particular, we get X(v) � Y π(v) from the first equality, and Y (π(v)) � X(v)

from the second. Hence Y (π(v)) � X(v).
Note that just one of the inequalities above, together with the finiteness of

the graphs involved, would suffice to obtain the same conclusion if one proves
that X(v) and Y π(v) have the same number of edges.

Proof of (i) ⇒ (ii).
(

X

Q

)
=

1
n− |Q|

∑

v∈V (X)

(
X(v)

Q

)
=

1
n− |Q|

∑

v∈V (X)

(
Y (π(v))

Q

)
=

(
Y

Q

)
.

Proof of (i) ⇒ (iii). From what above, we can show that (i)′∧ (ii) ⇒ (iii).
Simply write

(
X

Q

)

v

=
(

X

Q

)
−

(
X

Q

)

v′
=

(
Y

Q

)
−

(
Y

Q

)

π(v)′
=

(
Y

Q

)

π(v)

.

Proof of (iii) ⇒ (ii). One can briefly argue as follows.
If, for each v ∈ V (X), one counts the number of subgraphs of X containing

v and isomorphic to (the given fixed) Q and then sums up the values obtained
for various v, one overcounts each such subgraph H (isomorphic to Q) by a
factor |H|, because for all vertices v of H the same H is counted.
As the subgraphs considered are all isomorphic to Q, they all have the same

order |Q|. This allows us to obtain
(
X
Q

)
by dividing out by |Q|. Then

(
X

Q

)
=

1
|Q|

∑

v∈V (X)

(
X

Q

)

v

=
1
|Q|

∑

v∈V (Y )

(
Y

Q

)

π(v)

=
(

Y

Q

)
,

which proves (ii).

Proof of (ii) ⇒ (i) when K = G. One has to take into account the fact
that the various Ulam-subgraphs may have different sizes (number of edges).
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We shall prove (i) by assuming only that
(
X
Q

)
=

(
Y
Q

)
for all graphs Q of order

exactly n − 1. In fact, in this part of the proof, all the subgraphs of X and Y
considered will be subgraphs of order n− 1.
If Q is a graph of order n − 1, denote by UX(Q) (resp. UY (Q)) the set of

Ulam-subgraphs of X (resp. of Y ) isomorphic to Q.
We have to prove that, for any such Q

|UX(Q)| = |UY (Q)|.
(indeed, this amounts to proving that X and Y have the same Ulam-deck, i.e.
that (i) holds for some bijection π : V (X) → V (Y )).
We shall split the proof into steps, according to the size of Q. We shall

procede starting with the maximum size.
So, let lX (resp. lY ) be the largest size value of a subgraph of X (resp. of

Y ) of order n− 1. By the assumption (ii) it is clear that lX = lY : Indeed, if it
were, say, lX < lY , there would be in Y at least a subgraph U of order n − 1
and size lY , hence

(
Y
U

)
≥ 1, whereas in X all subgraphs of order n − 1 would

have size ≤ lX < lY , hence
(
X
U

)
= 0, a contradiction. Thus we set l := lX = lY .

Before proceeding, note the important fact that any subgraph of X (resp.
of Y ) of order n− 1, and of arbitrary size s, is contained in exactly one Ulam-
subgraph. In other words, there are no subgraphs of order n− 1 in the intersec-
tion of two distinct Ulam-subgraphs (possibly of different sizes). Let Q be an

arbitrary graph of order n− 1. Denote by
(
G
Q

)[k]
the number of subgraphs of a

graph G of order n isomorphic to Q and contained in some Ulam-subgraph of
size k.
By the above consideration, it follows that

• if Ql is a graph of (order n− 1 and) size equal to l, then
(

X

Ql

)
=

(
X

Ql

)[l]

and

(
Y

Ql

)
=

(
Y

Ql

)[l]

. (1)

Indeed, a subgraph of (order n − 1 and) size l is necessarily contained in
(in fact it is equal to) some Ulam-subgraph of size l.

• If Ql−1 is a graph of (order n− 1 and) size equal to l − 1, then
(

X

Ql−1

)
=

(
X

Ql−1

)[l]

+
(

X

Ql−1

)[l−1]

,

(
Y

Ql−1

)
=

(
Y

Ql−1

)[l]

+
(

Y

Ql−1

)[l−1]

.

(2)

Indeed, a subgraph of (order n − 1 and) size l − 1 is either contained in
some Ulam-subgraph of size l, or in in some Ulam-subgraph of size l − 1.

In general, if Qs is a graph of (order n− 1 and) size equal to s, we have

(
X

Qs

)
=

l∑

k=s

(
X

Qs

)[k]

and

(
Y

Qs

)
=

l∑

k=s

(
Y

Qs

)[k]

. (3)
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We shall use the equalities (3) in succession, starting with s = l. We begin
by considering (one-by-one) representatives of all graphs Ql of (order n−1 and)
size l. From (1) (that is (3) with s = l) and from assumption (ii), we obtain

(
X

Ql

)[l]

=
(

Y

Ql

)[l]

,

that is |UX(Ql)| = |UY (Ql)|. This equality allows us to set up (at least) a one-to-
one iso-correspondence μl (i.e. with corresponding objects isomorphic) between
the Ulam-subgraphs of X of size l and those of Y . By “restriction”, μl gives
rise to one-to-one iso-correspondences μl,r between the set of subgraphs Hr of
X of size r contained in some Ulam-subgraph of size l, and the analogous set
of subgraphs Kr of Y (see Fig. 3, where r = l − 1, and the action of μl,l−1 is
drawn only partially).

X Y

♣ ♦ ♦

♥

♠


 
 
 
 
 ∇ 
 
 �

♣ ♦ ♦

♥

♠


 
 
 
 
 ∇ 
 
 �

�

μl

� ��

μl

μl� �

�� ��
μl,l−1

μl,l−1

Figure 3: The one-to-one iso-correspondence μl,l−1 induced by μl. The dashed
vertical lines stress the fact that any subgraph of order n − 1 is contained in
exactly one Ulam-subgraph (depicted in square frames).

Consequently we have, for any Qr of (order n− 1 and) size r < l

(
X

Qr

)[l]

=
(

Y

Qr

)[l]

. (4)

Now, consider equality (2) (that is (3) with s = l − 1). Applying equality (4)
with r = l − 1 and assumption (ii), we obtain

(
X

Ql−1

)[l−1]

=
(

Y

Ql−1

)[l−1]

,

that is |UX(Ql−1)| = |UY (Ql−1)|. This equality allows us to set up (at least) a
one-to-one iso-correspondence μl−1 between the Ulam-subgraphs of X of size
l − 1 and those of Y . By “restriction”, μl−1 gives rise to one-to-one iso-
correspondences μl−1,t between the set of subgraphs Ht of X of size t contained
in some Ulam-subgraph of size l − 1 and the analogous set of subgraphs Kt

of Y .
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Consequently we have, for any Qt of (order n− 1 and) size t < l − 1
(

X

Qt

)[l−1]

=
(

Y

Qt

)[l−1]

. (5)

Now, consider equality (3) with s = l − 2. Applying both equalities (4) with
r = l − 2 and (5) with t = l − 2, together with assumption (ii), we obtain

(
X

Ql−2

)[l−2]

=
(

Y

Ql−2

)[l−2]

,

that is |UX(Ql−2)| = |UY (Ql−2)|.
Repeating this argument for l−3, . . . , 1, 0, we obtain the desired conclusion.

�

Remark 2 Because of the equivalence (i) ⇔ (ii) (when K = G), Kelly–Ulam’s
conjecture can be rephrased by saying that two graphs of order n are isomorphic
if and only if they contain the same number of subgraphs isomorphic to any
graph Q of order less than n.
Although Conditions (ii) and (iii) of Theorem 1 are equivalent when con-

sidered for all graphs Q of order less than n, Conditions (ii) no longer implies
Condition (iii) when Q is taken in a class K smaller than the class G of all
graphs. Thus, for example, when the class K consists of the single graph K2

(the connected graph on two vertices) Condition (ii) says that X and Y have
the same number of edges, whereas Condition (iii) says that they have the same
degree-sequence. As an example, one may take X to be a four cycle and Y a
graph of order 4 having exactly one vertex of degree 1. The same X and Y
also show that Condition (ii) does not imply Condition (iii) even if the class K
consisted of all Q of order n− 2.
However, since our proof of (ii) ⇒ (i) only uses subgraphs of order n− 1, we

see that (ii) ⇒ (iii) when K consists of all Q of order n− 1.

5 K-congruent pairs of graphs. Control-classes for a given
class of graphs

Because of the equivalence of (i), (ii), and (iii) in Theorem 1 (when K = G),
whenever the Kelly–Ulam’s conjecture is proved for two graphs X,Y , such a
result can be reformulated in two ways.
For example, Kelly’s Theorem on trees ([7]) can be reformulated in the

following ways (omitting the recognition part of his statement)

(O) Let T1, T2 be two trees of order n. If for all graphs Q ∈ G of order less
than n it holds

(
T1
Q

)
=

(
T2
Q

)
, then T1 � T2.

(P) Let T1, T2 be two trees of order n. If there is a bijection π : V (T1) → V (T2)
such that

(
T1
Q

)
v

=
(
T2
Q

)
π(v)

for all v ∈ V (T1) and for all Q ∈ G of order
less than n, then T1 � T2.
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This leads to the following definitions.

Definition 2 Let K be a class of graphs, and X,Y graphs of order n. We say
that X,Y are K-homogeneous if

(
X
Q

)
=

(
Y
Q

)
for all Q in K of order less than

n. We say that X,Y are K-congruent if there is a bijection π : V (X) → V (Y ),
called K-congruence, such that

(
X
Q

)
v

=
(
Y
Q

)
π(v)
for all v ∈ V (X) and all Q in K

of order less than n.

Definition 3 Let K be a class of graphs. The K-table of a graph G is the
array whose rows are labelled by the vertices of G, whose columns are labelled
by representatives of the isomorphism classes of the graphs of K such that, for
v ∈ V (G), Q ∈ K, the entry at position (v,Q) is the number of subgraphs of G
containing v isomorphic to Q.

From this definition it follows that two graphs X and Y are K-congruent if
and only if their K-tables are equal, up to reordering of the rows.

Definition 4 Let A be a class of graphs of order n. A class of graphs K is
called an overall control-class for A if two graphs G1, G2 ∈ A are isomorphic
whenever

(
G1
Q

)
=

(
G2
Q

)
, for all Q ∈ K of order less than n, i.e. whenever they are

K-homogeneous.
Similarly, K is called a pointwise control-class forA if two graphs G1, G2 ∈ A

are isomorphic whenever there is a bijection π : V (G1) → V (G2) for which(
G1
Q

)
v

=
(
G2
Q

)
π(v)
, for all v ∈ V (G1) and all Q ∈ K of order less than n, i.e.

whenever they are K-congruent.

Remark 3 Since (
G

Q

)
=

1
|Q|

∑

v∈V (G)

(
G

Q

)

v

then, clearly, if K is an overall control-class for A, then K is also a control-class
for A. Moreover, if Kelly–Ulam’s Conjecture is true, then the class G of all
graphs is a control-class for any A.

A generalization of the Reconstruction Problem which seems interesting to
us is the following.

Problem 1 Find minimal control-classes for A, when A is a class of recon-
structible graphs, for instance the class of trees ([7]), cacti ([4], [10]), maximal
planar graphs ([8]) and so on (minimal control-classes may not be unique).

In the special case when A is the class of all trees of a fixed order n, one
may consider several interesting candidates for control-classes (either overall or
pointwise)

• the class P of paths,
• the class Pσ of σ-paths (i.e. disjoint unions of paths),
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• the class C of caterpillars,
• the class Cσ of σ-caterpillars,

• the class O of octopi (i.e. trees with at most one vertex of degree greater
than 2).

Each class listed above has the feature that it contains the connected sub-
graphs of its elements. The classes Pσ and Cσ in fact contain all subgraphs of
their elements.
It is not known if the classes Pσ, C, Cσ, O listed above are pointwise control-

classes for the trees. In [3] example-pairs are given that show that P is not
a pointwise control-class for the trees of order n for many values of n. The
minimal pair (n = 20) is shown in Figure 4. This pair also shows that O is not
an overall control-class for the trees.
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Figure 4: Minimal pair of non-isomorphic P-congruent trees.

Remark 4 In view of the remark at the end of Section 4, if Kelly-Ulam’s
Conjecture is true, not only the class G of all graphs, but also the class Gn−1

of all graphs of order exactly n − 1 is an overall control-class for the class of
all graphs of order n. However, in general, if K is a control-class for a class
A of graphs of order n, it may not be true that also the class K ∩ Gn−1 is a
control-class for A. In fact, K ∩ Gn−1 may well be empty. For example, several
trees of order n will contain no octopus or caterpillar of order n−1: Thus these
trees could never be distinguished by the octopi or caterpillars of order n− 1.

6 The Ulam-ladder

There are several ways of strengthening Kelly–Ulam’s conjecture. The first and
most natural is to ask whether fewer than n Ulam-subgraphs suffice to determine
a graph (up to isomorphism). It has been proved that three suitably selected
Ulam-subgraphs suffice “almost always” ([1]). For an arbitrary graph G of order
n, Harary and Plantholt ([6]) have conjectured that [n

2 ] + 2 well-selected Ulam-
subgraphs should suffice to determine G, and in fact 3 should suffice if n is
prime.
To discuss another strengthening of Kelly–Ulam’s conjecture we premise a

definition.
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Definition 5 The Ulam-ladder is the function L : N → N defined by setting
L(n) to be the smallest positive integers m such that all graphs of order n are
determined by their induced subgraphs of order m.

There is some evidence to contend that

lim
n→∞

n− L(n) = ∞.

However, Nýdl has proved that for any fixed rational number q < 1, there is
a positive integer n and a graph G of order n such that the knowledge of all
induced subgraphs of G of order less than or equal to qn does not allow to
determine G ([11]). In other words, if the Kelly–Ulam’s conjecture is true, the
graph of L(n) lies below the straight line y = x − 1, but, by Nýdl’s result, it
does not lie below any straight line passing through the origin of slope q < 1.
However, a shape for the graph of L(n) like the one hinted at in Figure 5 would
be compatible with Nýdl’s result (the first eight values of L(n) that we have
drawn have been verified by computer).

�

�
1 2

2

3 4
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7
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Figure 5: The Ulam-ladder.

We believe that the determination of the Ulam-ladder is one of the most
charming problems in graph reconstruction.
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