Previous |  Up |  Next

Article

References:
[1] ARASON J. K., ELMAN R., JACOB B.: Rigid elements, valuations and realization of Witt rings. J. Algebra, 110 (1987), 449-467. MR 0910395 | Zbl 0629.10016
[2] BAEZA R., MORESI R.: On the Witt equivalence of fields of characteristic 2. J. Algebra, 92 (1985), 446-453. MR 0778461 | Zbl 0553.10016
[3] CARPENTER J.: Finiteness Theorems for Forms over Number Fields. Dissertation, LSU Baton Rouge, La., 1989. MR 2637678
[4] CZOGALA A.: Witt Rings of Algebraic Number Fields. (Polish). Dissertation, Silesian University, Katowice, 1987.
[5] CZOGALA A.: On reciprocity equivalence of quadratic number fields. Acta Arith. (to appear). MR 1111088 | Zbl 0733.11012
[6] HARRISON D. K.: Witt Rings. Univ. of Kentucky, 1970.
[7] LAM T. Y.: The Algebraic Theory of Quadratic Forms. Benjamin/Cummings, Reading, Mass, 1980. MR 0634798 | Zbl 0437.10006
[8] MILNOR J., HUSEMOLLER D.: Symmetric Bilinear Forms. Springer Verlag, 1973. MR 0506372 | Zbl 0292.10016
[9] O'MEARA O.T.: Introduction to Quadratic Forms. Springer Verlag, 1971. MR 0347768 | Zbl 0207.05304
[10] PALFREY T.: Density Theorems for Reciprocity Equivalence. Dissertation, LSU Baton Rouge, La., 1989. MR 2638308
[11] PERLIS R., SZYMICZEK K., CONNER P. E., LITHERLAND R.: Matching Witts with global fields. Preprint (1989). MR 1260721
[12] SZYMICZEK K.: Problem No. 7. In : Proc. Summer School on Number Theory, Chlébské 1983. J. E. Purkyně Univ., Brno, 1985.
[13] SZYMICZEK K.: Witt equivalence of global fields. Commun. Algebra 19 (1991), 1125-1149. MR 1102331 | Zbl 0724.11020
[14] WARE R.: Valuation rings and rigid elements in fields. Canad. J. Math., 33 (1981), 1338-1355. MR 0645230 | Zbl 0514.10015
Partner of
EuDML logo