Previous |  Up |  Next

Article

Keywords:
nonlinear dissipation; sharp and nonuniform nonresonance
Summary:
We formulate nonuniform nonresonance criteria for certain third order differential systems of the form $X^{^{\prime \prime \prime }} + AX^{^{\prime \prime }} + G(t,X^{^{\prime }} ) + CX = P(t)$, which further improves upon our recent results in [12], given under sharp nonresonance considerations. The work also provides extensions and generalisations to the results of Ezeilo and Omari [5], and Minhós [9] from the scalar to the vector situations.
References:
[1] Afuwape A. U., Omari P., Zanolin F.: Nonlinear perturbations of differential operators with nontrivial kernel and applications to third-order periodic boundary value problems. J. Math. Anal. Appl. 143, 1 (1989), 35–56. MR 1019448 | Zbl 0695.47044
[2] Andres J., Vlček V.: Periodic solutions of the third order parametric differential equations involving large nonlinearities. Math. Slovaca 41, 4 (1991), 337–349. MR 1149042 | Zbl 0753.34025
[3] Conti G., Iannacci R., Nkashama M. N.: Periodic solutions of Liénard systems at resonance. Ann. Math. Pura. Appl. 141, 4 (1985), 313–327. MR 0798178 | Zbl 0577.34035
[4] Ezeilo J. O. C., Nkashama M. N.: Resonant and nonresonant oscillations for third-order nonlinear ordinary differential equations. Nonlinear Analysis, T.M.A. 12, 10 (1988), 1029–1046. MR 0962767
[5] Ezeilo J. O. C., Omari P.: Nonresonant oscillations for some third-order Differential equations II. J. Nigerian Math. Soc. 8 (1989), 25–48.
[6] Mawhin J.: Topological Degree Methods in Nonlinear Boundary Value Problems. In: CBMS Regional Conference Series in Mathematics 40 (1979), American Math. Soc., Providence, R.I. MR 0525202 | Zbl 0414.34025
[7] Mawhin J., Ward J. R.: Nonuniform nonresonance conditions at the two first eigenvalues for periodic solutions of forced Liénard and Duffing equations. Rocky Mount. J. Math. 12, 4 (1982), 643–653. MR 0683859 | Zbl 0536.34022
[8] Mawhin J., Ward J. R.: Periodic solutions of some forced Liénard differential equations at resonance. Arch. Math. 41 (1983), 337–351. MR 0731606 | Zbl 0537.34037
[9] Minhós F.: Periodic solutions for a third order differential equation under conditions on the potential. Portugaliae Math. 55, 4 (1998), 475–484. MR 1672255 | Zbl 0923.34045
[10] Tejumola H. O., Afuwape A. U.: Periodic solutions of certain third-order nonlinear differential systems with delay. I.C.T.P. Trieste, Preprint IC/90/418, (1990).
[11] Ukpera A.S.: Periodicity results for strongly nonlinear systems of third order boundary value problems. Anal. Stiint. ale Univ. “Al. I. Cuza" 46 (2000), 215–230. MR 1880207 | Zbl 1009.34013
[12] Ukpera A.S.: Periodic solutions of certain third order differential systems with nonlinear dissipation. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 41 (2002), 147–159. MR 1968227 | Zbl 1040.34049
Partner of
EuDML logo