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Abstract

We formulate nonuniform nonresonance criteria for certain third order
differential systems of the form X

′′′
+ AX

′′
+ G(t, X

′
) + CX = P (t),

which further improves upon our recent results in [12], given under sharp
nonresonance considerations. The work also provides extensions and gen-
eralisations to the results of Ezeilo and Omari [5], and Minhós [9] from
the scalar to the vector situations.

Key words: Nonlinear dissipation, sharp and nonuniform nonreso-
nance.
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1 Introduction

An investigation of the solvability circumstances for the nonlinear differential
system

X
′′′

+ AX
′′

+ G(t, X
′
) + CX = P (t) (1.1)

subject to the T -periodic boundary conditions

X(0)−X(T ) = X
′
(0)−X

′
(T ) = X

′′
(0)−X

′′
(T ) = 0 (1.2)

*Research supported by Obafemi Awolowo University Research Grant Code 1425TK.
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on [0, T ] with T > 0, was initiated in our recent paper [12]. Our basic mo-
tivation has been to provide vector analogues to some existing results in the
literature for several scalar prototypes such as those contained in [1], [2], [4] and
[5]. For instance, Ezeilo and Omari [5] studied firstly the 2π-periodic solutions
associated with the scalar version of (1.1), with g = g(x

′
), satisfying the sharp

nonresonance conditions

(g1) k2 + α−(|y|) <
g(y)
y

< (k + 1)2 − α+(|y|), k ∈ N,

where α± : (0, +∞) → R are two nonincreasing functions such that

lim
|y|→+∞

|y|α±(|y|) = +∞,

This result has been improved by Minhós [9] by weakening the condition on
the oscillation of g, with the condition (g1) replaced by the two conditions

(g2) k2 ≤ lim inf
|y|→±∞

g(y)
y

≤ lim sup
|y|→±∞

g(y)
y

≤ (k + 1)2

and

(G) k2 < lim sup
y→+∞

2G(y)
y2

, lim inf
y→+∞

2G(y)
y2

< (k + 1)2)

where G denotes the primitive of the nonlinear function g, that is,

G(y) =
∫ y

0

g(τ) dτ

Here, the ratio g(y)
y may interact with the spectrum {k2, k ∈ N}, although

(G) imposes some ‘density’ control given by the asymptotic behaviour of the
primitive of g.
Moreover, when g = g(t, x

′
), nonuniform assumptions

(g3) k2 ≤ γ−(t) ≤ lim inf
|y|→∞

g(t, y)
y

≤ lim sup
|y|→∞

g(t, y)
y

≤ γ+(t) ≤ (k + 1)2

uniformly in y ∈ R for a.e. t ∈ [0, 2π], where γ± ∈ L1(0, 2π) such that strict
inequalities hold on subsets of [0, 2π] of positive measure; were also established
in [5] for the existence of 2π-periodic solutions, with accompanying uniqueness
results given by appropriate modification of these conditions.
Our earlier objective, in [12], to generalise some of these results has been

partially addressed with the generation of the sharp nonresonance hypotheses

(G1) k2ω2 + α−(‖Y ‖) ≤ 〈G(t, Y ), Y 〉
‖Y ‖2

≤ (k + 1)2ω2 − α+(‖Y ‖) ,
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uniformly in Y ∈ Rn with ‖Y ‖ ≥ r > 0, and a.e. t ∈ [0, T ], where k ∈ N,
ω = 2π

T , and α± : Rn
+ → R are two functions which are such that

(G2) lim
‖Y ‖→+∞

‖Y ‖α±(‖Y ‖) = +∞

for the existence of T -periodic solutions to (1.1)–(1.2). These relations clearly
generalise the sharp nonresonance conditions prescribed in [5].
There are however, certain equations of type (1.1) with G not satisfying

(G1)–(G2), for which, nevertheless, T -periodic solvability results appear to be
provable, subject to some other generalisations on G. An example is the system

X
′′′

+ AX
′′

+
1
2
(
(k + 1)2ω2 + k2ω2 + (2k + 1)ω2 cos t

)
X

′
+ CX = P (t) (1.3)

with the ratio

〈G(t, Y ), Y 〉
‖Y ‖2 =

1
2
(
(k + 1)2ω2 + k2ω2 + (2k + 1)ω2 cos t

)

lying in the open interval
(
k2ω2, (k + 1)2ω2

)
for a.e. t ∈ [0, T ], but for which

there do not exist functions α± satisfying (G2) for which (G1) holds (since the
ratio touches both (possible) eigenvalues as (k+1)2−k2 = 2k+1). This justifies
a further treatment of (1.1) incorporating g2 and g3 along the lines of [3], [7], [8]
and [10], which clearly specifies the growth pattern and asymptotic conditions
on G, unlike the rather arbitrary assumptions employed in [11]. This article
proposes some generalisations in this direction.
Note also that condition (G2) cannot be dropped as shown by the nonlinear

system
X

′′′
+ AX

′′
+ k2ω2X

′
+ tan−1(X

′
) + CX = P (t) (1.4)

Here, the ratio

〈G(t, Y ), Y 〉
‖Y ‖2 = k2ω2 + ‖Y ‖−1 tan−1(Y ) ,

with
α−(‖Y ‖) = ‖Y ‖−1 tan−1(Y ) and α+(‖Y ‖) = 2kω2

but
lim

‖Y ‖→∞
‖Y ‖α−(‖Y ‖) =

π

2

= +∞,

so that (G2) is not fulfilled by α− and therefore, the system has no T -periodic
solution.
Accordingly, X ∈ Rn, A and C are constant real n×n nonsingular matrices,

andG : [0, T ]×Rn → Rn and P : [0, T ] → Rn are n-vectors, which are T -periodic
in t. We shall assume further that G satisfies the Carathéodory conditions, that
is, G(·, X ′

) is measurable for every X
′ ∈ Rn; G(t, ·) is continuous for a.e. t ∈

[0, T ], and for each r > 0, there exists an integrable function γr ∈ L1([0, T ], R)
such that ||G(t, X

′
)|| ≤ γr(t), for ||X

′ || ≤ r and a.e. t ∈ [0, T ].
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Let X be a point of the Euclidean space Rn equipped with the usual norm
‖X‖. For any pair X, Y ∈ Rn, we shall write 〈X, Y 〉 for the usual scalar product
of X and Y so that in particular, 〈X, X〉 = ‖X‖2.
It is standard result that if D is a real n×n symmetric matrix, then for any

X ∈ Rn,
δd||X ||2 ≤ 〈DX, X〉 ≤ Δd||X ||2, (1.6)

where δd and Δd are respectively the least and greatest eigenvalues of D. In
general, λi(D) shall denote the eigenvalues of any matrix D, and ‖D‖2 its
spectral norm.
The following Banach spaces will also be frequently refered to:

(i) the classical spaces of k times continuously differentiable functions
Ck([0, T ], Rn), k ≥ 0 an integer, where C0 = C and C∞ = ∩k≥0C

k with
norms ‖X‖Ck and ‖X‖∞ respectively;

(ii) the space of T -periodic functions Ck
T ([0, T ], Rn) defined by

Ck
T = {X : [0, T ] → Rn : X ∈ Ck and X is T -periodic}

with the norm on Ck ;

(iii) Lp([0, T ], Rn), 1 ≤ p < +∞, the usual Lebesgue spaces with the norms
‖X‖Lp and ‖X‖∞ for p = +∞;

(iv) the Sobolev space W k,p
T ([0, T ], Rn), of T -periodic functions of order k,

defined by

W k,p
T = {X : [0, T ] → Rn : X, X

′
, . . . , X(k−1) are absolutely continuous

on [0, T ], X(k) ∈ Lp (0, T ) and X(i)(0)−X(i)(T ) = 0,

i = 0, 1, 2, . . . , k − 1, k ∈ N}

with corresponding norm ‖X‖W k,p
T
;

(v) The Hilbert space H1([0, T ], Rn) defined by

H1(0, T ) = {X : [0, T ] → Rn : X, is absolutely continuous on [0, T ],
X

′ ∈ L2(0, T ) and X(i)(0)−X(i)(T ) = 0, i = 0, 1}

with norm

‖X‖H1 =
{ n∑

i=1

[(
1
T

∫ T

0

xi(t) dt

)2

+
1
T

∫ T

0

(
xi(t)

)2
dt+

1
T

∫ T

0

(
x

′
i(t)

)2
dt

]} 1
2

.

Let

H̃1(0, T ) =
{

X ∈ H1(0, T )
∣∣∣ 1
T

∫ T

0

X(t) dt = 0
}
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2 Previous investigations and some preliminary results

Consider the eigenvalue problem

X
′′′

+ AX
′′

+ CX = −λX
′

(2.1)

together with (1.2), with A, C nonsingular, and λ a real parameter. It has been
shown in [5] that

(i) any λ 
= k2ω2, for each k = 1, 2, . . ., is not an eigenvalue; and

(ii) λ = k2ω2, for some k = 1, 2, . . ., is an eigenvalue if and only if C = k2ω2A.

Let Ek be the eigenspace corresponding to the unique eigenvalue k2ω2, when
it exists. Then we deduce from [9] the following result:
For every X ∈ W 3,2

T (0, 2π), we have

∫ T

0

〈X ′′′
+AX

′′
+k2ω2X

′
+CX, X

′′′
+AX

′′
+(k+1)2ω2X

′
+CX〉 dt ≥ 0, (2.2)

and the equality holds if and only if X = 0 or either k2ω2 or (k + 1)2ω2 is an
eigenvalue of (2.1) and X ∈ Ek or X ∈ Ek+1, respectively.
Each of the statements (i) or (ii) has an important bearing on the solvability

of the PBVP for the non-autonomous system

X
′′′

+ AX
′′

+ λX
′
+ CX = P (t) (2.3)

with P ∈ L1.
It is clear for instance, from (i) and the Fredholm alternative, that a solution

for (1.1)–(1.2) can be expected if the ratio 〈G(t, X
′
), X

′〉/‖X ′‖2 is such that

k2ω2 <
〈G(t, X

′
), X

′〉
‖X ′‖2

< (k + 1)2ω2,

for ‖X ′‖ sufficiently large, and a.e. t ∈ [0, T ], provided that some control is
put on the closeness of the ratio to k2ω2 and (k + 1)2ω2. This expectation has
resulted in the evolution of conditions (G1)− (G2).
The main role of statement (ii) is to provide an adequate background against

which the sharpness of our conditions on G can be tested. Observe that α±

considered in (G1) can be infinitesimal as ‖Y ‖ → +∞, but by (G2) their order
must be less than one. This implies that the ratio can approach the (possible)
eigenvalues k2ω2 and (k + 1)2ω2, provided that the approach is not too fast.
For instance, conditions (G1)− (G2) admit functions G such as

G(Y ) = k2Y − ‖Y ‖α sgn(Y ), m ∈ N, 0 < α < 1,

satisfying

lim
‖Y ‖→+∞

〈G(Y ), Y 〉
‖Y ‖2

= k2,
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and yet by the statement (ii), (2.3)–(1.2) with λ = k2, does not have a solution
in general, that is, for unrestricted A and C nonsingular. Thus for (1.1), we
seek conditions on G(t, Y ) allowing lim‖Y ‖→+∞

〈G(t,Y ),Y 〉
‖Y ‖2 (if it exists) to touch

k2, k ∈ N, for many values of t.
In the sequel, we shall require some preliminary lemmas.

Lemma 2.1 Consider the linear homogeneous system

X
′′′

(t) + AX
′′
(t) + B(t)X

′
(t) + CX(t) = 0 (2.4)

where A is an arbitrary matrix, C is a nonsingular matrix and B(t) ≡ (bij(t))
is such that bij ∈ L1(0, T ) and

(B1) k2ω2 ≤ λi(B(t)) ≤ (k + 1)2ω2

for a.e. t ∈ [0, T ], i = 1, . . . , n, k ∈ N, with the strict inequality holding on
subsets of [0, T ] of positive measure.
Then, (2.4)–(1.2) has no non-trivial solution.

Proof Let the solution X(t) = X(t) + X̃(t) have the Fourier expansion

X(t) ∼
n∑

i=1

(
c0,i +

∞∑

k=1

(ck,i cos kωt + dk,i sinkωt)
)

,

such that

X =
n∑

i=1

(
c0,i +

N∑

k=1

(ck,i cos kωt + dk,i sin kωt)
)

and

X̃ =
n∑

i=1

∞∑

k=N+1

(ck,i cos kωt + dk,i sin kωt ) ,

for some integer N > 0 with N2ω2 < λ < (N + 1)2ω2, where ω = 2π
T .

Then, multiplying (2.4) by X
′
(t)− X̃

′
(t) and integrating over [0.T ] gives,

∫ T

0

((
X̃

′′
(t)

)2 −
〈
B(t)X̃

′
(t), X̃

′
(t)

〉)
dt

−
∫ T

0

((
X

′′
(t)

)2 −
〈
B(t)X

′
(t), X

′
(t)

〉)
dt = 0. (2.5)

Let δ be a constant defined by

δ =
1
2

(minλi (B(t)) + maxλi (B(t))) (2.6)

for a.e. t ∈ [0, T ]. Then in fact,

k2ω2 ≤ δ ≤ (k + 1)2ω2, for a.e. t ∈ [0, T ], and
k2ω2 < δ < (k + 1)2ω2, on subsets of [0, T ] of positive measure. (2.7)
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Thus, combining (B1), (2.6) and (2.7), (2.5) becomes

0 ≥
∫ T

0

[(
X̃

′′
(t)

)2

− δ
(
X̃

′
(t)

)2
]

dt−
∫ T

0

[(
X

′′
(t)

)2

− δ
(
X

′
(t)

)2
]

dt = 0.

(2.8)
By Parseval’s identity given by

∫ T

0

‖X‖2 dt =
n∑

i=1

(
c2
0,iT +

T

2

∞∑

k=1

(c2
k,i + d2

k,i)
)

,

(2.8) becomes

T

2

n∑

i=1

[ ∞∑

k=N+1

k2ω2(k2ω2− δ)(c2
k,i + d2

k,i) +
N∑

k=1

k2ω2(δ− k2ω2)(c2
k,i + d2

k,i)
]

= 0.

(2.9)
It follows from (2.7) that ck,i = 0 (k = 0, 1, 2, . . .) and dk,i = 0 (k = 1, 2, . . .),
for all i = 1, . . . , n. Thus, X ≡ 0, and the lemma follows. �

Lemma 2.2 Let C be nonsingular, and assume that M, N ∈ L1([0, T ], Rn2
) are

nonsingular matrices which satisfy the following conditions

k2ω2‖Y ‖2 ≤ 〈M(t)Y, Y 〉 ≤ 〈N(t)Y, Y 〉 ≤ (k + 1)2ω2‖Y ‖2 (2.10)

uniformly in Y ∈ Rn, for a.e. t ∈ [0, T ], k ∈ N, ω = 2π
T , and

k2ω2‖Y ‖2 < 〈M(t)Y, Y 〉, 〈N(t)Y, Y 〉 < (k + 1)2ω2‖Y ‖2 (2.11)

on subsets of [0, T ] of positive measure.
Then, there exists constants ε = ε(M, N, C) > 0 and δ0 = δ0(M, N, C) > 0

uniformly a.e. on [0, T ], such that for all B(t) ≡ (bij(t)) with bij ∈ L1([0, T ], R)
satisfying

(B2) 〈M(t)Y, Y 〉 − ε‖Y ‖2 ≤ 〈B(t)Y, Y 〉 ≤ 〈N(t)Y, Y 〉+ ε‖Y ‖2

uniformly in Y ∈ Rn, a.e. on [0, T ], and all X ∈ W 3,1
T ([0, T ], Rn), one has

‖X ′′′
+ AX

′′
+ B(·)X ′

+ CX‖L1 ≥ δ0‖X‖W 3,1
T

(2.12)

Proof Let us assume that the conclusion of the Lemma does not hold, that is, ε
and δ0 do not exist. Then, there exists a sequence (Xn) ∈ W 3,1([0, T ], Rn) with
‖Xn‖W 3,1 = 1, and a sequence (Bn) ∈ L1([0, T ], Rn2

) of nonsingular matrices
with

〈M(t)Y, Y 〉 − 1
n
‖Y ‖2 ≤ 〈Bn(t)Y, Y 〉 ≤ 〈N(t)Y, Y 〉+

1
n
‖Y ‖2, n ∈ N, (2.13)

uniformly in Y ∈ Rn, for a.e. t ∈ [0, T ], such that for all X ∈ W 3,1, one has
∫ T

0

‖X ′′′
n (t) + AX

′′
n (t) + Bn(t)X

′
n(t) + CXn‖ dt <

1
n

. (2.14)
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Let ‖Bn‖ denote the norm of Bn. Then, by (2.13), there exists some β ∈
L1([0, T ], R) such that

‖Bn(t)‖ ≤ β(t), n = 1, 2, . . . (2.15)

for a.e. t ∈ [0, T ], n ∈ N. For example, one can take

β(t) ≡ 1
‖Y ‖2

[‖〈M(t)Y, Y 〉 − 〈Y, Y 〉‖ + ‖〈N(t)Y, Y 〉+ 〈Y, Y 〉‖] .

Now, by the compact embedding ofW 3,1([0, T ], Rn) intoW 2,1([0, T ], Rn) and
the continuous embedding of W 2,1([0, T ], Rn) into C1([0, T ], Rn) imply that by
going to subsequences if neccessary, we can assume that

Xn → X in C1([0, T ], Rn), X
′′
n → X

′′
in L∞([0, T ], Rn) ⊂ L1([0, T ], Rn).

(2.16)
Moreover, by (2.15), we deduce that

Bn ⇀ B in L1([0, T ], Rn2
) (2.17)

so that by (2.13),

〈M(t)Y, Y 〉 ≤ 〈B(t)Y, Y 〉 ≤ 〈N(t)Y, Y 〉 (2.18)

for a.e. t ∈ [0, T ].
On the other hand, for every Φ ∈ L∞([0, T ], Rn), we have by Schwarz in-

equality

∥∥∥
∫ T

0

〈
Bn(t)X

′
n(t)−B(t)X

′
(t), Φ(t)

〉
dt

∥∥∥

≤
∥∥∥
∫ T

0

〈
Bn(t)

(
X

′
n(t)−X

′
(t)

)
, Φ(t)

〉
dt

∥∥∥+
∥∥∥
∫ T

0

〈(
Bn(t)−B(t)

)
X

′
(t), Φ(t)

〉
dt

∥∥∥

≤ ‖Φ‖∞‖β‖L1‖X
′
n −X

′‖∞ +
∥∥∥
∫ T

0

〈(
Bn(t)−B(t)

)
X

′
(t), Φ(t)

〉
dt

∥∥∥. (2.19)

The right hand side of (2.19) tends to zero by (2.16) and (2.17), and we deduce
that

BnX
′
n ⇀ BX

′
in L1([0, T ], Rn). (2.20)

By (2.14), (2.16) and (2.20), it follows that

X
′′′
n = −AX

′′
n −Bn(·)X ′

n − CXn ⇀ −AX
′′ −B(·)X ′ − CX in L1([0, T ], Rn).

(2.21)
Since the operator

d3

dt3
: W 3,1([0, T ], Rn) ⊂ L1([0, T ], Rn) → L1([0, T ], Rn)
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is weakly closed, this implies (by (2.16) and (2.21)) that X ∈ W 3,1
T ([0, T ], Rn),

and X
′′′

= −AX
′′ −B(·)X ′ − CX , that is,

X
′′′

(t) + AX
′′
(t) + B(t)X

′
(t) + CX(t) = 0, (2.22)

for a.e. t ∈ [0, T ] and X ∈ W 3,1([0, T ], Rn).
It follows from (2.9), (2.10), (2.18), (2.22) and Lemma 2.1 that X ≡ 0, that

is, Xn → 0 inW 3,1([0, T ], Rn) as n →∞. But this clearly contradicts the initial
assumption that ‖Xn‖W 3,1 = 1 for all n, and the proof is complete. �

Lemma 2.3 Let D ∈ L1
(
[0, T ], Rn2)

be a nonsingular matrix such that 0 ≤
λi(D(t)) ≤ ω2 a.e. on [0, T ], with the strict inequality holding on a subset of
[0, T ] of positive measure. Then, there exists a constant η = η(D) > 0 such that
for all X̃ ∈ H̃1([0, T ], Rn), we have

1
T

∫ T

0

[(
X̃

′
(t)

)2

− 〈D(t)X̃(t), X̃(t)〉
]

dt ≥ η‖X̃‖2

H1 (2.23)

Proof This is clearly the same as in the proof of Lemma 1 of [8] by setting
λi(D(t)) ≡ Γi(t), i = 1, 2, . . . , n, where Γi ∈ L1([0, T ], R) satisfies Γi(t) ≤ ω2

a.e. on [0, T ], with the strict inequality holding on a subset of [0, T ] of positive
measure, and replacing the period 2π by T . �

3 The main results

We now present our main results:

Theorem 3.1 Let C be a nonsingular matrix. Suppose that G is L1-Carathéodory
and satisfies

(G3) k2ω2 ≤ 〈M(t)Y, Y 〉
‖Y ‖2

≤ lim inf
‖Y ‖→∞

〈G(t, Y ), Y 〉
‖Y ‖2

≤ lim sup
‖Y ‖→∞

〈G(t, Y ), Y 〉
‖Y ‖2

≤ 〈N(t)Y, Y 〉
‖Y ‖2

≤ (k + 1)2ω2

uniformly in Y ∈ Rn for a.e. t ∈ [0, T ], k ∈ N and M, N ∈ L1([0, T ], Rn2
) are

such that k2ω2‖Y ‖2 < 〈M(t)Y, Y 〉, 〈N(t)Y, Y 〉 < (k + 1)2ω2‖Y ‖2 on subsets
of [0, T ] of positive measure. Then, for any arbitrary matrix A, the system
(1.1)–(1.2) has at least one solution for every P ∈ L1([0, T ], Rn).

Proof Let ε > 0 be as in Lemma 2.2. Then, by (G3), we can fix a constant
vector ρ = ρ(ε) with each ρi > 0 such that

〈M(t)Y, Y 〉 − ε‖Y ‖2 ≤ 〈G(t, Y ), Y 〉 ≤ 〈N(t)Y, Y 〉+ ε‖Y ‖2 (3.1)

for a.e. t ∈ [0, T ] and all Y ∈ Rn with |yi| ≥ ρi.
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Now define ν(t, Y ) ≡ (νi(t, Y ))1≤i≤n : [0, T ]× Rn → Rn by

νi(t, Y ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y−1
i gi(t, Y ), if |yi| ≥ ρi;

yiρ
−2
i gi(t, y1, . . . , yi−1, ρi, yi+1, . . . , yn) + (1 − yi

ρi
)β(t),

if 0 ≤ yi < ρi;

yiρ
−2
i gi(t, y1, . . . , yi−1,−ρi, yi+1, . . . , yn) + (1 + yi

ρi
)β(t),

if − ρi ≤ yi < 0.

for a.e. t ∈ [0, T ], where β is given by

β(t) ≡ 1
‖Y ‖2

[
‖〈M(t)Y, Y 〉 − 〈Y, Y 〉‖+ ‖〈N(t)Y, Y 〉+ 〈Y, Y 〉‖

]
, (3.2)

so that by construction and (3.1), we deduce that

〈M(t)Y, Y 〉 − ε‖Y ‖2 ≤ 〈ν(t, Y ), Y 〉 ≤ 〈N(t)Y, Y 〉+ ε‖Y ‖2 (3.3)

for a.e. t ∈ [0, T ] and Y ∈ Rn.
The function G̃ ≡ (g̃i(t, Y ))1≤i≤n[0, T ] × Rn → Rn defined by g̃i(t, Y ) =

νi(t, Y )yi satisfies the Carathéodory conditions, by construction. Hence, setting
Ψ(t, Y ) = G(t, Y )− G̃(t, Y ), then Ψ(t, Y ) is also L1-Carathéodory with

‖Ψ(t, Y )‖ ≤ sup
|yi|≤ρi

‖G(t, Y )− G̃(t, Y )‖ ≤ ϕ(t) (3.4)

for a.e. t ∈ [0, T ] and Y ∈ Rn, for some ϕ ∈ L1([0, T ], R) depending only on
M, N and γr mentioned at the beginning in association with G. Then, the
problem (1.1) is equivalent to

X
′′′

(t) + AX
′′
(t) + G̃(t, X

′
(t)) + Ψ(t, X

′
(t)) + CX(t) = P (t) (3.5)

By the Leray–Schauder technique (see Mawhin [6]), the proof of the Theorem
now follows by showing that there is a constantK > 0, independent of λ ∈ (0, 1),
such that ‖X‖C2 < K, for all possible solutions X of the homotopy

X
′′′

+ AX
′′

+ (1− λ)N(t)X
′
+ λG̃(t, X

′
) + λΨ(t, X

′
) + CX = λP (t) (3.6)

We observe from (3.3) that

〈M(t)Y, Y 〉−ε‖Y ‖2 ≤ 〈 (1−λ)N(t)Y +λG̃(t, Y ), Y 〉 ≤ 〈N(t)Y, Y 〉+ε‖Y ‖2 (3.7)

for a.e. t ∈ [0, T ], Y ∈ Rn and λ ∈ [0, 1].
Thus, we may set (1 − λ)N(t)X

′
+ λG̃(t, X

′
) ≡ B(t)X

′
, for a.e. t ∈ [0, T ],

X
′ ∈ Rn and λ ∈ [0, 1], where, by (3.7), B(t) is such that

〈M(t)X
′
, X

′〉 − ε‖X ′‖2 ≤ 〈B(t)X
′
, X

′〉 ≤ 〈N(t)X
′
, X

′〉+ ε‖X ′‖2 (3.8)

for a.e. t ∈ [0, T ], X
′ ∈ Rn and λ ∈ [0, 1].
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Thus (3.6) becomes

0 ≥ ‖X ′′′
+ AX

′′
+ B(·)X ′

+ CX‖L1 − ‖Ψ(·, X ′
)‖L1 − ‖P (·)‖L1 (3.9)

Using Lemma 2.2 and (3.4) finally gives

0 ≥ δ0‖X‖W 3,1 − ‖δ‖L1 − ‖P‖L1 (3.10)

which yields a constant K0 > 0 such that ‖X‖W 3,1 ≤ K0. Hence, we obtain the
required constant K > 0 such that ‖X‖C2 < K, following a standard procedure
just as in [2], and the conclusion follows. �

Remark 3.1 The result of Theorem 3.1 can be extended to nonlinear systems
of the form

X
′′′

+
d

dt
grad f(X

′
) + G(t, X

′
) + H(X) = P (t), (3.11)

under suitable assumptions on G satisfying some requirements in respect of the
first (possible) eigenvalue λ = ω2 of (2.1)–(1.2).
Here, f : Rn → R is a C2-function, H : Rn → Rn is continuous and satisfies

a sign condition, while G and P are as specified earlier.

Theorem 3.2 Assume that G satisfies

(G4) lim
‖Y ‖→+∞

〈G(t, Y ), Y 〉
‖Y ‖2

≤ 〈N(t)Y, Y 〉
‖Y ‖2

≤ ω2

uniformly in Y ∈ Rn for a.e. t ∈ [0, T ], where N ∈ L1([0, T ], Rn2
) is such that

〈N(t)Y , Y 〉 < ω2‖Y ‖2 on subsets of [0, T ] of positive measure.
Moreover, suppose that H satisfies

(H) lim
‖X‖→+∞

sgn(X)H(X) = +∞.

Then, (3.11)–(1.2) has at least one solution for every P ∈ L1([0, T ], Rn).

Proof As in the preceding proof, for each ε > 0, there exists ρ = ρ(ε) > 0 such
that

〈G(t, Y ), Y 〉 ≤ 〈N(t)Y, Y 〉+ ε‖Y ‖2

for a.e. t ∈ [0, T ] and all Y ∈ Rn with |yi| ≥ ρi.
Then, define G̃(t, Y ) and Ψ(t, Y ) as before, so that the relations

〈(1− λ)N(t)Y + λG̃(t, Y ), Y 〉 ≤ 〈N(t)Y, Y 〉+ ε‖Y ‖2, λ ∈ [0, 1]

and
‖Ψ(t, Y )‖ ≤ ϕ(t)

hold, for a.e. t ∈ [0, T ] and every Y ∈ Rn.
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It suffices to establish the neccessary (or appropriate) a-priori bounds for
the λ-dependent family of systems

X
′′′

+ λ
d

dt
gradf(X

′
) + (1− λ)N(t)X

′
+ λG̃(t, X

′
) + λΨ(t, X

′
)

+ (1− λ)CX + λH(X) = λP (t), (3.12)

for λ ∈ [0, 1], where C is a fixed nonsingular and positive definite matrix.
Let X be a solution of (3.12)–(1.2). Taking the scalar product of (3.12) with

X
′
(t) and integrating over [0, T ] using (1.2) gives

∫ T

0

‖X ′′‖2 dt =
∫ T

0

〈(1− λ)N(t)X
′
+ λG̃(t, X

′
), X

′〉 dt + 〈Ψ(·, X ′
)−P (·), X ′〉L2

(3.13)
That is, from above

‖X ′′‖2
L2 ≤

∫ T

0

〈N(t)X
′
(t), X

′
(t) 〉 dt + ε‖X ′‖2

L2 + (‖ϕ‖L1 + ‖P‖L1)‖X ′‖∞
(3.14)

Noting that by Lemma 2.3,

‖X ′′‖2
L2 −

∫ T

0

〈N(t)X
′
(t), X

′
(t)〉 dt =

=
∫ T

0

((X
′′
(t))2 − 〈N(t)X

′
(t), X

′
(t)〉) dt ≥ η‖X ′‖2

H1 =
η

T
‖X ′′‖2

L2,

for some constant η = η(Γ) > 0, we obtain from (3.14)

η‖X ′′‖2
L2 ≤ εT

ω2
‖X ′′‖2

L2 + (‖ϕ‖L1 + ‖P‖L1)T
3
2 ‖X ′′‖L2 (3.15)

by the Wirtinger and other standard inequalities. Hence, taking 0 < εT < ω2η,
we deduce that

‖X ′′‖L2 ≤ c1 , (3.16)

for some c1 > 0. Thus, we have

‖X ′‖∞ ≤
√

T‖X ′′‖L2 ≤
√

Tc1 (3.17)

This implies that
‖X −X(t0)‖ ≤ T ‖X ′‖∞ ≤ T

3
2 c1 (3.18)

where t0 ∈ [0, T ] is arbitrarily fixed.
Now observe that

∫ T

0

(1− λ)N(t)X
′
+ λG̃(t, X

′
) dt ≤

∫ T

0

(N(t)X
′
+ εX

′
) dt = 0 (3.19)
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Then, taking the average of (3.12) on [0, T ], we obtain by the Mean Value
Theorem,

∥∥(1− λ)X(t�) + λC−1H(X(t�))
∥∥ =

=
∥∥∥(1− λ)

( 1
T

∫ T

0

X(t) dt
)

+ λ
( 1

T

∫ T

0

C−1H(X(t)) dt
)∥∥∥

≤ ‖C−1‖
(

1
T
‖δ‖L1 +

1
T
‖P‖L1

)
:= c2 (3.20)

for some t� ∈ [0, T ].
Now by hypothesis (H), it follows that for any k > 0, there exists a q =

q(k) > 0 such that

‖C−1H(X)‖ = ‖H̃(X)‖ = sgn(X)H̃(X) > k, (3.21)

for every ‖X‖ > max{k, q}, and all positive definite C. Hence, for any λ ∈ (0, 1],
we have
∥∥(1− λ)X + λC−1H(X)

∥∥ = sgn(X)
(
(1−λ)X+λC−1H(X)

)
≥ (1−λ)k+λk = k

(3.22)
for every ‖X‖ > max{k, q}. Thus, choosing k > c2, it follows that

‖X(t�)‖ ≤ max{k, q} := c3 (3.23)

Combining (3.18) and (3.23) with t0 = t�, we obtain

‖X‖∞ ≤ T
3
2 c1 + c3 := c4 (3.24)

Lastly, integrating (3.12) and using the continuity ofH and (3.24), we deduce
the existence of a constant c5 > 0, such that

‖X ′′′‖L1 ≤ c5, (3.25)

so that
‖X ′′‖∞ ≤ T ‖X ′′′‖L1 = Tc5 (3.26)

Therefore, by (3.17), (3.24) and (3.26),

‖X‖C2 = ‖X‖∞ + ‖X ′‖∞ + ‖X ′′‖∞ ≤ c6, (3.27)

for some c6 > 0, and we are done. �

As pointed out earlier, Theorem 3.2 admits solutions for periodic systems
associated with

X
′′′

+
d

dt
gradf(X

′
) +

ω2

2
(1 + sin t)X

′
+ H(X) = P (t). (3.28)

Finally, we conclude this study with a uniqueness criterion for the system
(1.1)–(1.2). The following result holds:
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Theorem 3.3 Let C be nonsingular and suppose that G satisfies, for some
k ∈ N,

(G5) k2ω2 ≤ 〈M(t)(Y1 − Y2), Y1 − Y2〉
‖Y1 − Y2‖2

≤ 〈G(t, Y1)−G(t, Y2), Y1 − Y2〉
‖Y1 − Y2‖2

≤ 〈N(t)(Y1 − Y2), Y1 − Y2〉
‖Y1 − Y2‖2

≤ (k + 1)2ω2,

or

(G6)
〈G(t, Y1)−G(t, Y2), Y1 − Y2〉

‖Y1 − Y2‖2 < ω2,

uniformly for a.e. t ∈ [0, T ] and Y1, Y2 ∈ Rn with Y1 
= Y2.
Then, (1.1)–(1.2) has at most one solution.

Proof Case (i) G subject to (G5): The PBVP satisfied by V = Y1 − Y2, for
any two solutions Y1, Y2 of (1.1)–(1.2) is of the form

V
′′′

(t) + AV
′′
(t) + B�(t, V

′
)V

′
(t) + CV (t) = 0, (3.28)

with
V (0)− V (T ) = V

′
(0)− V

′
(T ) = V

′′
(0)− V

′′
(T ) (3.29)

where the matrix B� ∈ L1(0, T ) is defined by

B�(t, V (t))V (t) =
{

G(t, V + Y2)−G(t, Y2), if V 
= 0
M(t), if V = 0

and by (G5) satisfies

λi(M(t)) ≤ λi (B�(t, V (t))) ≤ λi(N(t))

uniformly in V ∈ Rn for a.e. t ∈ [0, T ].
Hence, using the arguments of Lemma 2.1, we see that V ≡ 0, and the

uniqueness, subject to (G5), is thus proved.

Case (ii) G subject to (G6): We consider the PBVP (3.28)-(3.29) as before
except that this time B� is defined by

B�(t, V (t))V (t) =
{

G(t, V + Y2)−G(t, Y2), if V 
= 0
0, if V = 0

so that by (G6), λi (B�(t, V (t))) < ω2 uniformly in V ∈ Rn for t ∈ [0, T ].
Multiply now (3.28) scalarly by V

′
(t) and integrate over [0, T ] using (3.29)

and we get

∫ T

0

‖V ′′
(t)‖2 dt =

∫ T

0

〈B�(t, V (t))V
′
(t), V

′
(t)〉 dt ≤

∫ T

0

〈B̃(t)V
′
(t), V

′
(t)〉 dt,

(3.30)
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where we set λi(B̃(t)) = max{0, λi(B�(t, V (t)))} uniformly in V for a.e. t ∈
[0, T ].
Clearly then, B̃(t) ∈ L1(0, T ) is such that 0 ≤ λi(B̃(t)) < ω2 for a.e. t ∈

[0, T ]. Thus using Lemma 2.3 setting X̃ = V
′
, (3.30) becomes

0 ≥
∫ T

0

‖V ′′
(t)‖2 dt−

∫ T

0

〈 B̃(t)V
′
(t), V

′
(t)〉 dt ≥ η‖V ′‖2

H1 (3.31)

from which we deduce that V
′ ≡ 0, leading to V ≡ 0, and the proof is complete.

�
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