Previous |  Up |  Next

Article

References:
[1] DAVIS D.: Computing the number of totally positive circular units which are squares. J. Number Theory 10 (1978), 1-9. MR 0476695 | Zbl 0369.12002
[2] ESTES D. R.: On the parity of the class number of the field of q-th roots of unity. Rocky Mountain J. Math. 19 (1989), 675-681. MR 1043240 | Zbl 0703.11052
[3] JAKUBEC S.: On divisibility of class number or real abelian fields of prime conductor. Abh. Math. Sem. Univ. Hamburg 63 (1993), 67-86. MR 1227865
[4] JAKUBEC S.: On Divisibility of h+ by the prime 3. Rocky Mountain J. Math. 24 (1994), 1467-1473. MR 1322239
[5] JAKUBEC S.: On Divisibility of h+ by the prime 5. Math. Slovaca 44 (1994), 650-700. MR 1338435
[6] JAKUBEC S.: Connection between Wiefferich congruence and divisibility of h+. Acta Arith. 71 (1995), 55-64. MR 1338671
[7] JAKUBEC S.: Connection between congruences nq-1 = 1 (mod q2) and divisibility of h+. Abh. Math. Sem. Univ. Hamburg 66 (1996), 151-158. MR 1418226
[8] JAKUBEC S.: On divisibility of the class number h+ of the real cyclotomic fields of prime degree I. Math. Comp. 67 (1998), 396-398. MR 1443121
[9] JAKUBEC S.-TROJOVSKY P.: On divisibility of the class number h+ of the real cyclotomic fields Q(C + Cp1) by primes q <= 5000. Abh. Math. Sem. Univ. Hamburg 67 (1997), 269-280. MR 1481542
[10] METSÄNKYLÄ T.: An application of the p-adic class number formula. Manuscripta Math. 93 (1997), 481-498. MR 1465893 | Zbl 0886.11061
[11] VAN DER LINDEN F.: Class number computations of real abelian number fields. Math. Comp. 39 (1982), 693-707. MR 0669662 | Zbl 0505.12010
[12] WAGSTAFF S. S.: The irregular primes to 125000. Math. Comp. 32 (1978), 583-592. MR 0491465 | Zbl 0377.10002
[13] WASHINGTON L. C.: Introduction to Cyclotomic Fields. Grad Texts in Math., Springer-Verlag, New York-Heidelberg-Berlin, 1982. MR 0718674 | Zbl 0484.12001
Partner of
EuDML logo