[1] DAVIS D.:
Computing the number of totally positive circular units which are squares. J. Number Theory 10 (1978), 1-9.
MR 0476695 |
Zbl 0369.12002
[2] ESTES D. R.:
On the parity of the class number of the field of q-th roots of unity. Rocky Mountain J. Math. 19 (1989), 675-681.
MR 1043240 |
Zbl 0703.11052
[3] JAKUBEC S.:
On divisibility of class number or real abelian fields of prime conductor. Abh. Math. Sem. Univ. Hamburg 63 (1993), 67-86.
MR 1227865
[4] JAKUBEC S.:
On Divisibility of h+ by the prime 3. Rocky Mountain J. Math. 24 (1994), 1467-1473.
MR 1322239
[5] JAKUBEC S.:
On Divisibility of h+ by the prime 5. Math. Slovaca 44 (1994), 650-700.
MR 1338435
[6] JAKUBEC S.:
Connection between Wiefferich congruence and divisibility of h+. Acta Arith. 71 (1995), 55-64.
MR 1338671
[7] JAKUBEC S.:
Connection between congruences nq-1 = 1 (mod q2) and divisibility of h+. Abh. Math. Sem. Univ. Hamburg 66 (1996), 151-158.
MR 1418226
[8] JAKUBEC S.:
On divisibility of the class number h+ of the real cyclotomic fields of prime degree I. Math. Comp. 67 (1998), 396-398.
MR 1443121
[9] JAKUBEC S.-TROJOVSKY P.:
On divisibility of the class number h+ of the real cyclotomic fields Q(C + Cp1) by primes q <= 5000. Abh. Math. Sem. Univ. Hamburg 67 (1997), 269-280.
MR 1481542
[10] METSÄNKYLÄ T.:
An application of the p-adic class number formula. Manuscripta Math. 93 (1997), 481-498.
MR 1465893 |
Zbl 0886.11061
[11] VAN DER LINDEN F.:
Class number computations of real abelian number fields. Math. Comp. 39 (1982), 693-707.
MR 0669662 |
Zbl 0505.12010
[13] WASHINGTON L. C.:
Introduction to Cyclotomic Fields. Grad Texts in Math., Springer-Verlag, New York-Heidelberg-Berlin, 1982.
MR 0718674 |
Zbl 0484.12001