[1] BAILEY D. H.-BORWEIN J. M.-BORWEIN P. B.-PLOUFFE S.:
The quest for Pi. Math. Intell. 19 (1997), 50-57.
MR 1439159 |
Zbl 0878.11002
[2] BAXA C.:
A note on Diophantine representations. Amer. Math. Monthly 100 (1993), 138-143.
MR 1212399 |
Zbl 0805.11085
[3] DAVIS M.:
Hilberťs Tenth Problem is unsolvable. Amer. Math. Monthly 80 (1973), 233-269 (Reprinted as Appendix 2 in: DAVIS, M.: Computability and Unsolvability, Dover, New York, 1982).
MR 0317916
[4] DAVIS M.-MAТIJASEVIČ, YU. V.-ROBINSON J.: Hilberťs Tenth Problem. Diophantine equations: Positive aspects of a negative solution. In: Mathematical Developments Arising from Hilbert Problems (F. E. Browder, ed.), Amer. Math. Soc, Providence, RI, 1976.
[5] DAVIS M.-PUТNAM H.-ROBINSON J.:
The decision problem for exponential Diphantine equations. Ann. Matһ. 74 (1961), 425-436.
MR 0133227
[6] JONES J. P.:
Diophantine representation of Mersejine and Fermat primes. Acta Arith. 35 (1979), 209-221.
MR 0550293
[8] JONES J. P.-MAТIJASEVIČ, JU. V.:
A new representation for the symmetric binomial coefficient and its applications. Ann. Sci. Math. Québec 6 (1982), 81-97.
MR 0672122 |
Zbl 0499.03028
[9] JONES J. P.-MAТIJASEVIČ, YU. V.:
Proof of recursive unsolvability of Hilberťs Tenth Problem. Amer. Math. Monthly 98 (1991), 689-709.
MR 1130680
[10] JONES J. P.-SAТO D.-WADA H.-WIENS D.:
Diophantine representatюn of the set of prime numbers. Amer. Math. Monthly 83 (1976), 449-464.
MR 0414514
[12] MATIJASEVIČ, JU. V.: Enumerable sets are Diophantine. Soviet Math. Doklady 11 (1970), 354-358.
[13] MATIJASEVIČ, JU. V.: Diophantine representation of the set of prime numbers. Soviet Math. Doklady 12 (1971), 249-254.
[14] MATIYASEVICH, YU. V.:
Hilberťs Tenth Problem. MIT Press, Cambridge-Massachusetts, 1993.
MR 1244324
[15] PUTNAM H.:
An unsolvable problem in number theory. J. Symb. Logic 25 (1960), 220-232.
MR 0158825