Previous |  Up |  Next

Article

References:
[1] ADAMS M. E- SICHLER J.: Cover set lattices. Canad. J. Math. 32 (1980), 1177-1205. MR 0596104
[2] ADAMS M. E.-SICHLER J.: Lattices with unique complementation. Pacific. J. Math. 92 (1981), 1-13. MR 0618040 | Zbl 0468.06005
[3] CHEN C. C.-GRÄTZER G.: On the construction of complemented lattices. J. Algebra 11 (1969), 56-63. MR 0232715 | Zbl 0185.03701
[4] CRAWLEY P.-DILWORTH R. P.: Algebraic Theory of Lattices. Prentice-Hall, Englewood Cliffs, NJ, 1973. Zbl 0494.06001
[5] DEAN R. A.: Free lattices generated by partially ordered sets and preserving bounds. Canad. J. Math. 16 (1964), 136-148. MR 0157916 | Zbl 0122.25801
[6] DILWORTH R. P.: Lattices with unique complements. Trans. Amer. Math. Soc. 57 (1945), 123-154. MR 0012263 | Zbl 0060.06103
[7] GRÄTZER G.: General Lattice Theory. (2nd ed.), Birkhäuser Verlag, Basel, 1998 (Soft-cover edition Birkhauser Verlag, Basel-Boston-Berlin, 2003). MR 1670580 | Zbl 0909.06002
[8] GRÄTZER G.: A reduced free product of lattices. Fund. Math. 73 (1971/72), 21-27. MR 0307986 | Zbl 0229.06002
[9] GRÄTZER G.-LAKSER H.: Freely adjoining a relative complement to a lattice. Algebra Universalis 53 (2005), 189-210. MR 2148294 | Zbl 1083.06011
[10] GRÄTZER G.-LAKSER H.: Embedding lattices into m-transitively complemented lattices. (Manuscript).
[11] GRÄTZER G.-LAKSER H.-PLATT C. R.: Free products of lattices. Fund. Math. 69 (1970), 233-240. MR 0274351 | Zbl 0206.29703
[12] HUNTINGTON E. V.: Sets of independent postulates for the algebra of logic. Trans. Amer. Math. Soc. 79 (1904), 288-309. MR 1500675
[13] LAKSER H.: Free lattices generated by partially ordered sets. Ph.D. Thesis, University of Manitoba, 1968. MR 2702904
[14] SALII V. N.: Lattices with Unique Complements. Transl. Math. Monogr. 69, Amer. Math. Soc, Providence, RI. MR 0931777 | Zbl 0632.06009
[15] WHITMAN P. M.: Free lattices. I; II. Ann. of Math. (2) 42; 43 (1941; 1942), 325-330; 104-115. MR 0003614
Partner of
EuDML logo