[1] ADAMS M. E- SICHLER J.:
Cover set lattices. Canad. J. Math. 32 (1980), 1177-1205.
MR 0596104
[2] ADAMS M. E.-SICHLER J.:
Lattices with unique complementation. Pacific. J. Math. 92 (1981), 1-13.
MR 0618040 |
Zbl 0468.06005
[3] CHEN C. C.-GRÄTZER G.:
On the construction of complemented lattices. J. Algebra 11 (1969), 56-63.
MR 0232715 |
Zbl 0185.03701
[4] CRAWLEY P.-DILWORTH R. P.:
Algebraic Theory of Lattices. Prentice-Hall, Englewood Cliffs, NJ, 1973.
Zbl 0494.06001
[5] DEAN R. A.:
Free lattices generated by partially ordered sets and preserving bounds. Canad. J. Math. 16 (1964), 136-148.
MR 0157916 |
Zbl 0122.25801
[6] DILWORTH R. P.:
Lattices with unique complements. Trans. Amer. Math. Soc. 57 (1945), 123-154.
MR 0012263 |
Zbl 0060.06103
[7] GRÄTZER G.:
General Lattice Theory. (2nd ed.), Birkhäuser Verlag, Basel, 1998 (Soft-cover edition Birkhauser Verlag, Basel-Boston-Berlin, 2003).
MR 1670580 |
Zbl 0909.06002
[9] GRÄTZER G.-LAKSER H.:
Freely adjoining a relative complement to a lattice. Algebra Universalis 53 (2005), 189-210.
MR 2148294 |
Zbl 1083.06011
[10] GRÄTZER G.-LAKSER H.: Embedding lattices into m-transitively complemented lattices. (Manuscript).
[11] GRÄTZER G.-LAKSER H.-PLATT C. R.:
Free products of lattices. Fund. Math. 69 (1970), 233-240.
MR 0274351 |
Zbl 0206.29703
[12] HUNTINGTON E. V.:
Sets of independent postulates for the algebra of logic. Trans. Amer. Math. Soc. 79 (1904), 288-309.
MR 1500675
[13] LAKSER H.:
Free lattices generated by partially ordered sets. Ph.D. Thesis, University of Manitoba, 1968.
MR 2702904
[14] SALII V. N.:
Lattices with Unique Complements. Transl. Math. Monogr. 69, Amer. Math. Soc, Providence, RI.
MR 0931777 |
Zbl 0632.06009
[15] WHITMAN P. M.:
Free lattices. I; II. Ann. of Math. (2) 42; 43 (1941; 1942), 325-330; 104-115.
MR 0003614