Previous |  Up |  Next

Article

References:
[1] BIRKHOFF G.: Lattice Theory. (Зrd ed.). Amer. Math. Soc. Colloq. Publ. 25, Amer. Math. Soc, Providence, RI, 1967. MR 0227053 | Zbl 0153.02501
[2] CONRAD P.: Lattice Ordered Groups. Tulane Universitу, Math. Res. Librarу, New Orleans, 1970. Zbl 0258.06011
[3] CONRAD P.: Torsion radicals of lattice-ordered groups. Sуmpos. Math. 21 (1977), 479-513. MR 0465969 | Zbl 0372.06011
[4] CONRAD P.-DARNEL M. R.: Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Math. J. (To appear). MR 1844319 | Zbl 0978.06011
[5] GOFMAN C.: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions. Trans. Amer. Math. Soc 88 (1958), 107-120. MR 0097331
[6] JAKUBÍK J.: Cardinal properties of lattice ordered groups. Fund. Math. 74 (1972), 85-98. MR 0302528 | Zbl 0259.06015
[7] JAKUBÍK J.: Prime selectors and torsion classes of lattice ordered groups. Czechoslovak Math. J. 31 (1981), 325-337. MR 0611086 | Zbl 0473.06012
[8] JAKUBÍK J.: Torsion classes of Specker lattice ordered groups. Czechoslovak Math. J. 52 (2002), 469-482. MR 1923254 | Zbl 1012.06018
[9] JAKUBÍK J.: On vector lattices of elementary Carathéodory functions. Czechoslovak Math. J. 55 (2005), 223-236. MR 2121669 | Zbl 1081.06021
[10] JAKUBÍK J.: On Carathéodory vector lattices. Math. Slovaca 53 (2003), 479-503. MR 2038515 | Zbl 1071.06009
[11] MARTINEZ J.: Torsion theory for lattice ordered groups. Czechoslovak Math. J. 25 (1975), 284-299. MR 0389705 | Zbl 0321.06020
[12] MARTINEZ J.: Torsion theory for lattice ordered groups II. Czechoslovak Math. J. 26 (1976), 93-100. MR 0389706 | Zbl 0331.06009
[13] ŠIK F.: Über subdirekte Summen geordneter Gruppen. Czechoslovak Math. J. 10 (I960), 400-424. MR 0123626 | Zbl 0102.26501
Partner of
EuDML logo