Previous |  Up |  Next

Article

References:
[1] ADAMS W. W.-LOUSTAUNAU P.: An Introduction to Gröbner Bases. Grad. Stud. Math. 3, Amer. Math. Soc, Providence, RI, 1994. MR 1287608 | Zbl 0803.13015
[2] BARTÍK V.-KORBAŠ J.: Stiefel-Whitney characteristic classes and parallelizability of Grassmann manifolds. Rend. Circ Mat. Palermo (2) Suppl. 6 (1984), 19-29. MR 0782702 | Zbl 0566.57012
[3] BOREL A.: La cohomologie mod 2 de certains espaces homogènes. Comment. Math. Helv. 27 (1953), 165-97. MR 0057541 | Zbl 0052.40301
[4] BOREL A.: Sur la cohomologie des espaces fibres principaux et des espaces homogènes de groupes de Lie compact. Ann. of Math. (2) 57 (1953), 11-207. MR 0051508
[5] BOREL A.-HIRZEBRUCH F.: Characteristic classes and homogeneous spaces I. Amer. J. Math. 80 (1958), 458-535. MR 0102800
[6] CONDE A.: B-Genus and Non-Embeddings. PhD Thesis, University of Chicago. Chicago, 1971. MR 2611666
[7] CONDE A.: Sobre as classes de Atiyah-Hirzebruch, de Thom, o problema do mergulho e variedades flâmulas. Tese (Livre-Docência)-Instituto de Ciências Matemáticas, Universidade de São Paulo, São Carlos, 1979.
[8] COX D.-LITTLE J.-O'SHEA D.: Ideals, Varгeties and Algorithms. Undergrad. Texts Math., Springer, New York, 1992.
[9] GITLER S.: Immersion and embedding of manifolds. In: Algebraic Topology. Proc Sympos. Pure Math. 22, Amer. Math. Soc, Providence, RI, 1971, pp. 87-96. MR 0315726 | Zbl 0251.57011
[10] HILLER H.: Immersing homogeneous spaces in Euclidean space. Publ., Secc. Mat., Univ. Auton. Bare 26 (1982), 43-45. MR 0763333 | Zbl 0545.57008
[11] HILLER H.-STONG R. E.: Immersion dimension for real grassmannians. Math. Ann. 255 (1981), 361-367. MR 0615856 | Zbl 0439.51014
[12] HIRSCH M. W.: Immersions of manifolds. Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 0119214 | Zbl 0113.17202
[13] HUSEMOLLER D.: Fibre Bundles. Mc Graw-Hill, New York, 1966. MR 0229247 | Zbl 0144.44804
[14] KORBAŠ J.: Vector fields on real flag manifolds. Ann. Global Anal. Geom. 3 (1985), 173 84. MR 0809636 | Zbl 0579.57017
[15] KORBAS J.: Note on Stiefel-Whitney classes of flag manifolds. Rend. Circ. Mat. Palermo (2) Suppl. 16 (1987), 109-111. MR 0946716 | Zbl 0661.57007
[16] LAM K. Y.: A formula for the tangent bundle of flag manifolds and related manifolds. Trans. Amer. Math. Soc. 213 (1975), 305-314. MR 0431194 | Zbl 0312.55020
[17] LANG S.: Linear Algebra. (3rd ed.), Springer, New York, 1987. MR 0874113 | Zbl 0618.15001
[18] MENDES M. P.: An algebraic problem and the software Maple. (In preparation). Zbl 1027.13015
[19] MILNOR J. W.-STASHEFF J. D.: Characteristic Classes. Ann. of Math. Stud. 76, Princeton Univ. Press-Univ. of Tokyo Press, Princeton, NJ, 1974. MR 0440554 | Zbl 0298.57008
[20] SANKARAN P.-ZVENGROWSKI P.: On stable parallelizability of flag manifolds. Pacific J. Math. 122 (1986), 455-458. MR 0831125 | Zbl 0557.14030
[21] STEENROD N.: The Topology of Fibre Bundles. Princeton Math. Ser. 14, Princeton Univ. Press, Princeton, NJ, 1951. MR 0039258 | Zbl 0054.07103
[22] STONG R. E.: Immersions of real flag manifolds. Proc Amer. Math. Soc 88 (1983), 708-710. MR 0702304 | Zbl 0532.57020
[23] WHITEHEAD G. W.: Elements ofmhomotopy theory. Grad. Texts in Math. 61, Springer-Verlag, Berlin-Heidelberg-New York, 1978. MR 0516508
[24] ZVENGROWSKI P.: Recent work in the parallelizability of flag manifolds. In: Contemp. Math. 58, Amer. Math. Soc, Providence, RI. 1987, pp. 129-137. MR 0893852
Partner of
EuDML logo