Previous |  Up |  Next

Article

References:
[1] BENNETT M. K.-FOULIS D. J.: Interval and scale effect algebras. Adv. In Appl. Math. 19 (1997), 200-215. MR 1459498 | Zbl 0883.03048
[2] CHANG C. C. : Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc 88 (1957), 467-490. MR 0094302
[3] FOULIS D. J.: Compressible groups. Math. Slovaca 53 (2003), 433-455. MR 2038512 | Zbl 1114.06012
[4] FOULIS D. J.: Compressions on partially ordered abelian groups. Proc Amer. Math. Soc. 132 (2000), 3581-3587. MR 2084080 | Zbl 1063.47003
[5] GREECHIE R. J.-FOULIS D. J.-PULMANNOVÁ S.: The center of an effect algebra. Order 12 (1995), 91-106. MR 1336539 | Zbl 0846.03031
[6] GOODEARL K. R.: Partially Ordered Abelian Groups with Interpolation. Math. Surveуs Monogr. 20, Amer. Math. Soc, Providence, RI, 1986. MR 0845783 | Zbl 0589.06008
[7] GUDDER S. P.: Examples, problems, and results in effect algebras. Internat. J. Тheoret. Phуs. 35 (1996), 2365-2376. MR 1423412 | Zbl 0868.03028
[8] HARDING J.: Regularity in quantum logic. Internat. J. Тheoret. Phуs. 37 (1998), 1173-1212. MR 1626771 | Zbl 0946.03077
[9] MUNDICI D.: Interpretation of $AF\ C^ast$ -algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63. MR 0819173 | Zbl 0597.46059
[10] PТÁK P.-PULMANNOVÁ S.: Orthomodular Structures as Quantum Logics. Kluwer Acad. Publ., Dordrecht-Boston-London, 1991. MR 1176314
[11] RIESZ F.-SZ.-NAGY B.: Functional Analysis. Frederick Ungar Publishing Co., New York, 1955. MR 0071727
Partner of
EuDML logo