[1] BENNETT M. K.-FOULIS D. J.:
Interval and scale effect algebras. Adv. In Appl. Math. 19 (1997), 200-215.
MR 1459498 |
Zbl 0883.03048
[2] CHANG C. C. :
Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc 88 (1957), 467-490.
MR 0094302
[4] FOULIS D. J.:
Compressions on partially ordered abelian groups. Proc Amer. Math. Soc. 132 (2000), 3581-3587.
MR 2084080 |
Zbl 1063.47003
[5] GREECHIE R. J.-FOULIS D. J.-PULMANNOVÁ S.:
The center of an effect algebra. Order 12 (1995), 91-106.
MR 1336539 |
Zbl 0846.03031
[6] GOODEARL K. R.:
Partially Ordered Abelian Groups with Interpolation. Math. Surveуs Monogr. 20, Amer. Math. Soc, Providence, RI, 1986.
MR 0845783 |
Zbl 0589.06008
[7] GUDDER S. P.:
Examples, problems, and results in effect algebras. Internat. J. Тheoret. Phуs. 35 (1996), 2365-2376.
MR 1423412 |
Zbl 0868.03028
[8] HARDING J.:
Regularity in quantum logic. Internat. J. Тheoret. Phуs. 37 (1998), 1173-1212.
MR 1626771 |
Zbl 0946.03077
[9] MUNDICI D.:
Interpretation of $AF\ C^ast$ -algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63.
MR 0819173 |
Zbl 0597.46059
[10] PТÁK P.-PULMANNOVÁ S.:
Orthomodular Structures as Quantum Logics. Kluwer Acad. Publ., Dordrecht-Boston-London, 1991.
MR 1176314
[11] RIESZ F.-SZ.-NAGY B.:
Functional Analysis. Frederick Ungar Publishing Co., New York, 1955.
MR 0071727