[1] BIGARD A.-KEIMEL K.-WOLFENSTEIN S.:
Groupes et Anneaux Réticulés. Springer Verlag, Berlin-Heidelberg-New York, 1977.
MR 0552653 |
Zbl 0384.06022
[2] CHANG C. C.:
Algebraic analysis of many valued logic. Trans. Amer. Math. Soc. 88 (1958), 467-490.
MR 0094302
[3] CIGNOLI R. O. L.-D`OTTAVIANO I. M. L.-MUNDICI D.:
Algebraic Foundation of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
MR 1786097
[4] DVUREČENSKIJ A.:
Pseudo MV-algebras are intervals in t-groups. J. Aust. Math. Soc. 70 (2002), 427-445.
MR 1902211
[6] DVUREČENSKIJ A.-PULMANNOVÁ S.:
New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
MR 1861369 |
Zbl 0987.81005
[8] GLASS A. M. W.:
Partially Ordered Groups. World Scientific, Singapore-New Jersey-London-Hong Kong, 1999.
MR 1791008 |
Zbl 0933.06010
[10] JAKUBÍK J.:
Direct product decompositions of pseudo MV-algebras. Arch. Math. (Brno) 37 (2001), 131-142.
MR 1838410 |
Zbl 1070.06003
[11] KOVÁŘ T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Thesis, Palacky Univ., Olomouc, 1996.
[12] KÜHR J.:
Ideals of noncommutative DRl-monoids. Czechoslovak Math. J. 55 (2005), 97-111.
MR 2121658
[13] KÜHR J.: A generalization of GMV-algebras. Mult.-Valued Log. (To appear).
[14] RACHŮNEK J.:
A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52(127) (2002), 255-273.
MR 1905434 |
Zbl 1012.06012
[15] RACHŮNEK J.:
Prime spectra of non-commutative generalizations of MV-algebras. Algebra Universalis 48 (2002), 151-169.
MR 1929902 |
Zbl 1058.06015
[16] RACHŮNEK J.-ŠALOUNOVÁ D.:
Direct decompositions of dually residuated lattice ordered monoids. Discuss. Math. Gen. Algebra Appl. 24 (2004), 63-74.
MR 2118156 |
Zbl 1068.06016