Previous |  Up |  Next

Article

References:
[1] ARSTEIN Z.: Set valued measures. Trans. Amer. Math. Soc. 165, 1972, 103-121. MR 0293054
[2] BERBERIAN S. K.: Measure and Integration. New York 1965. MR 0183839 | Zbl 0126.08001
[3] CAPEK P.: Théorèmes de décomposition en théorie de la mesure I. II. Publications du Séminaire ďAnalyse de Brest, juin 1976. MR 0470169
[4] CAPEK P.: Decomposition theorems in measure theory. Math. Slovaca 31, 1981, No. 1, 53-59. MR 0619507 | Zbl 0452.28002
[5] CAPEK P.: The pathological infìnity of measures. Suppl. ai Rendiconti del Circolo Mat. Di Paleгmo. Série II-6, 1984. Zbl 0596.28001
[6] FICKER V.: On the equivalence of a countable disjoint class of sets of positive measure and a weaker condition than total σ-fìniteness of measures. Bull. Austral. Math. Soc. 1, 1969, 237-243. MR 0257310
[7] GODET-THOBIE C.: Multimesures et multimesures de transitions. Thèse. Montpellier. 1985.
[8] HAHN H., ROSENTHAL A.: Set Functions. The University of New Mexico Press 1948. MR 0024504 | Zbl 0033.05301
[9] HIAI F.: Radon-Nikodym theorems for set-valued measures. Journal of Miltiv. Analysis 8, 1978, 96-118. MR 0583862 | Zbl 0384.28006
[10] JOHNSON R. A.: Atomic and nonatomic measures. Proc. Amer. Math. Soc., 25, 1970, 650-655. MR 0279266 | Zbl 0201.06201
[11] SIKORSKI R.: Boolean Algebras. Springer-Verlag 1969. MR 0126393 | Zbl 0191.31505
[12] DREWNOWSKI L.: Additive and countably additive correspondences. Commentationes Mathem. XIX 1976. MR 0422564 | Zbl 0364.28014
[13] CAPEK P.: Abstract comparison of the properties of infìnite measures. Acta Math. Univ. Comen. (to appear).
Partner of
EuDML logo