[1] ARSTEIN Z.:
Set valued measures. Trans. Amer. Math. Soc. 165, 1972, 103-121.
MR 0293054
[3] CAPEK P.:
Théorèmes de décomposition en théorie de la mesure I. II. Publications du Séminaire ďAnalyse de Brest, juin 1976.
MR 0470169
[4] CAPEK P.:
Decomposition theorems in measure theory. Math. Slovaca 31, 1981, No. 1, 53-59.
MR 0619507 |
Zbl 0452.28002
[5] CAPEK P.:
The pathological infìnity of measures. Suppl. ai Rendiconti del Circolo Mat. Di Paleгmo. Série II-6, 1984.
Zbl 0596.28001
[6] FICKER V.:
On the equivalence of a countable disjoint class of sets of positive measure and a weaker condition than total σ-fìniteness of measures. Bull. Austral. Math. Soc. 1, 1969, 237-243.
MR 0257310
[7] GODET-THOBIE C.: Multimesures et multimesures de transitions. Thèse. Montpellier. 1985.
[9] HIAI F.:
Radon-Nikodym theorems for set-valued measures. Journal of Miltiv. Analysis 8, 1978, 96-118.
MR 0583862 |
Zbl 0384.28006
[10] JOHNSON R. A.:
Atomic and nonatomic measures. Proc. Amer. Math. Soc., 25, 1970, 650-655.
MR 0279266 |
Zbl 0201.06201
[12] DREWNOWSKI L.:
Additive and countably additive correspondences. Commentationes Mathem. XIX 1976.
MR 0422564 |
Zbl 0364.28014
[13] CAPEK P.: Abstract comparison of the properties of infìnite measures. Acta Math. Univ. Comen. (to appear).