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THE ATOMS OF A COUNTABLE SUM
OF SET FUNCTIONS

PETER CAPEK

1. Introduction

In [10], Roy A. Johnson studied atomic and nonatomic measures. In
the present paper some generalizations of these results are presented, both in the
case of nonnegative measures and for a more general type of set functions with
different ranges. The main results of the paper are: An expression of the set of
all atoms of a set function which is the sum of countably many set functions
(Theorem 1), further its semigroup valued version (Theorem 5). The problem
raised by Johnson [10, p. 651] is solved. By Theorem 2 the sum of countably
many atomic measures is an atomic measure.

The results were obtained by means of the abstract definition of an ato
(see [3]. [4]. [13]). '

2. Definitions and notations

Throughout the paper (X, %) will denote a measurable space with a o-ring
Y of subsets of X.

Let & be a family of subsets of X. In what follows the symbol “£§C" is used
in the sense of [6] and means that every family of pairwise disjoint elements
from & is at most countable (therefore 0 ¢ &). If 4 < X, then we use the symbol
A|é& in the Hahn sense [8], i.e. A|& = {Ee€é&: E = A}. The symbol A+ stands
for X — A, N denotes the set of positive integers.

In the following we shall work with subfamilies . # of a o-ring ¥’. Frequently
we shall use some of the following conditions in connection with

(i) .4 #0,

() Eel, Fe¥=EnFe. X,
(i) E, Fe.# = Eu Fe. X,
(iv) E,e./l, keN=| ) E,e. ¥,

k=1
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Wy E.Fe . EnF=0=EuUFe./.
(vi)y Ve. /.
Definition 1. A subfamily .4 of a o-ring ¥ is called:
) hereditary in & if it satisfies (i1).
(i) an ideal if it satisfies (1), (1i). (1ii).
i) «a o-ideual if i1 satisfies (1). (i1), (v},
uw) a generalized ideal (briefly a g-ideal) if 1 satisfies (v). (vi).
Definition 2. Let .17 be a subfamily of u o-ring ¥ and E€.%'. Then the famiiv
fr={A4eY EnAe. 17} is called “the contraction of the family A" by E".

Definition 3. For .t < % we deniote /(. 1) = (") (Vpu. v =14 Then
any element of <7(. A7) is called an arom. B

If for cvery Be(Y — A7) there exists Ae B|.o/(. 1), then 1 1y calicd atoniic
and it /(. ) = 0. then .V is called nonatomic.

Definition 4. Let G be a commutative semigroup with a neutral element O and
fet u: & — G be a set function. Then the famity .« = Ec Y : p(E) = 0} will be
calted the null system of the ser funcrion y.

Remark 1. The notion .{, was motivated by the notion ot contraction
v of a measure vby Ee.g.. |2, p. 12]. Forif vis a semigroup valued set function
defined on . with the null system .4 . then the set function v, has the null system
equal to .1 .. so there is valid: A = {Ge S : v.(G) = 0].

From this we can easily obtain that the set of all atoms of a set function v
with the null system . { " is exactly equal to the set .e7(.1 ) while the notion of a
v-atom 1s understood in the following sense:

4 1s an atom of the set function vif v(4) # 0 and if for all Ee€.% there holds:
vidr Ej=0o0r v(4 — E)=0.

Thus the results obtained in the paper evidently are valid for atoms of a set
function v having . 1" as a null system.

For applications of the results obtained for subfamilies of ., see Section 4
of this paper and Chapter II of [4. p. 61].

3. Results

Throughout the paper we shall need the following properties of subfamilies
of /. those of a contracuon of the family by the set and those of the set of all
atoms of a suofamily.

The proofs of Lemma | to Lemma 7 are rather straight-forward.

Lemma 1. Let .47, A7, &, be subfamilies of ¥ and let E€.¥. Then we have
@ (o) =1 cay,.

IR s nos
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(b) # <A =l N,
(c) Ae A (.N), Be A|(¥ — N)=>A — Be A,
(d) A(N)N AN =0.
If .V is hereditary, then we have:
€) A < A%,
() .V is hereditary.
If V' is a g-ideal, then we have:
(g) Ee(¥ — AN, FEE| AN =E — F¢ .V,
(h) Fe (. V), FEE|. 4" = E — Fed(A).
Throughout the paper, (a) to (h) will be reserved for the above indicated
conclusions of Lemma 1. ‘
Lemma 2. Let .7, A", .4, be subfamilies of & for ke N. Then there holds:

I3

(1) !o/(h !//A) < \J (M) O M),
A =1 1

Q) ACHAN) < A M)O AN,

Lemma 3. Let ./, A be subfamilies of &, A" be hereditary, then
(1) LA AN < A A AN,
2) LA AN)YN N = (M)A

Definition 5. The set Ae (M) N A(AN) will be called M N A"-decomposable
if there exists E€ % such that An E¢. # and A~ E*¢ .. In the opposite case
we shall say that Ae .o/ (A) N A(A7) is M N -indecomposable.

Definition 6. The set Ae () o/(.V;) will be called pairwise indecomposable for

iel
iel if for every i, jel A is .4 N A ;-indecomposable.
Remark 2. If Aeo/(.#)n o (AN) where 4 = A", then by (c), 4 is
./ n .1 -indecomposable.
Lemma 4. Let |V} _, be a sequence of subfamilies of & such that Ae

€ h /(A }). Then A ey(ﬁ A ) iff A is pairwise indecomposable for ke N.
' fI‘Iheorem 1. Let {4} _ ,A 1=>cl a sequence of hereditary subfamilies of &, then
d(h ‘///,\.) = U [{A € () L(M,): A is pairwise indecomp. for ke M} N
k=1 #McN keM )
nl () 4 j

keN-M
Proof. We subsequently use Lemma 2, (1) (1. equality), the distributive

law [11, §19, (10)] and (d) (2. equality), Lemma 3, (2) for .# = ﬂ -, and
4 = () 4 (3.equality) and Lemma 4 (last equality) so that vCéAéet:

heN-M

of ( ﬂ °’”k> = < ﬂ =»f//k> N [ ﬁ (A (M) U J/A)] =
k=1 k=1 :

k=1



oAy, [nl 0. 4))-

A =1 €M eN—-M

- Ml eeans ()] (0, 4)} -

0 Mc N ce M ke M eN— M

U [{A € () (.4): A is pairwise indecomp. for keM} N
0#Mc N ke M

(L0,

If we consider only two subfamilies, we get as a special case the following
consequence, which is a generalization of the theorem on the sum of two
nonatomic measures ([10, Theorem 1.1.]).

Corollary 1. Let .7, .V be hereditary subfamilies of .. Then

AMAN)={Ae (M) A(N): A is M O A -indecomp.} U
UL (M) N)O(L(N) ).

Lemma 5. If A" is hereditary and Ae s/ (AN"), then A < /(A)U . V.
The two following lemmas characterize the notions of .# n .4 -decom-
posability and .# n .1 -indecomposability.
Lemma 6. Let ./, A" be hereditary and Ae /(M) N s (.A7). Then the follow-
ing conditions are equivalent :
(1) Ais .4 .V -decomposable ;
(2) there exists E€ . such that An Ees/(M) and A E* e/ (A7);
(3) there exists E€ ¥ such that AnEe st (M N)and AnE et (M .V);
(4) there exists E€ ¥ such that AnNE¢ M A and AnE* ¢ .4 .4,
Lemma 7. Let ¥, .A" be hereditary and A e /(M) N .o/(A7). Then the follow-
ing conditions are equivalent :
(5) A is A A -indecomposable,
(6) AeA (A A7)
Moreover, if A" is an ideal, then the conditions (5), (6) are equivalent with (7):
(7) A|.2(A") < S (.A).

Lemma 8. Ler {A}}/_, be a sequence of o-ideals such that Be ﬂ o (N}).
* k=1

Then there exists A€ B| .o/ ( @ ;1’;).
\i =1

Proof. We introduce on the index set N the equivalence relation R as
follows: (i, j)e R iff B is .4, .#-indecomposable. Evidently R is reflexive and
symmetric. We will show that it is transitive too. Let (i, j)e R and (j, k) e R. By
Lemma 7 we have A4|.«/(.1]) c </(A;) and A|./(N}) < .o/ (A). From this we
obtain that 4| c/(.4;) = oZ(.4%), so (i, k)€ R; thus we have proved the transiti-
vity of R.
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Thus R is an equivalence on N and so it defines a partition {K},., of the
set N (i.e. K, are nonempty pairwise disjoint subsets of N such that UK =N|

Put 47" = (") W, for every iel. For any fixed i€, due to Le’renlma 4 and
keK;

Lemma 7, (7) there is valid B|.o/(.4}) = B|.«/(.+") for all ke K., therefore the
set of atoms of B|.&/(.#") is the same as that of B|.s/(A4}), where .V, is the
arbitrary o-ideal from the class {4, : ge K}.

So we have an at most countable family {4"'},., of o-ideals such that
Be o/(A"') and for all i #j B is 4" n A7-decomposable.

According to Lemma 6, (2) and (c) we get that for all i, jel, i #j there
exists sets B;, B; such that B,n B; =0, B;u B, = B, B,e A (AN')n.N", B;e
ed(AN')n A" Put A'= () B;for i€l Then

i#jel
B—A'=B- ﬂ B; = U (B— B = U BieA"
i#jel i#jel i#jel

for all iel.
Therefore by (h), A'e &/ (A"") and thus {4'};., is a family of pairwise disjoint

sets such that A’e () #”. By Lemma 3, (1) Aie,d(ﬂ .A/i). Because () A" =

i#jel iel iel

= ﬂ A%, we obtain that for every i€, A’é&/(ﬂ JV,(>. Sowecanput 4 = A
k=1 k=1 .
for arbitrary ie I and we obtain 4 from the conclusion of the lemma.

Theorem 2. Let {;}7_, be a sequence of atomic o-ideals, then () N, is an

. . k=1
atomic o-ideal, too.

Proof. Let C¢ () A} Denote M ={keN: C¢.N,}. Obviously M # 0.
k=1
To proof the theorem it suffices to find A€ C| o/ ( N .A/‘,(> , because in this case
keM o«
with respect to the fact A€ ﬂ A%, by Lemma 3, (1) we get 4 ed(ﬂ ./V}(>-

keN-M k=1

Thus we may suppose ) # M = N and C¢ .V, for all ke M. Since A, are
atomic for all ke M, there exists C,e C|/(A,). From the family of atoms
{C}ke s we form the family of atoms {B,};. ., Bi€ C|(A}) by putting
(1) B, = C, — (V{C;: Cin Cie N/ JU{(C, — C): (G — C)eNY).

We affirm that
(2) {Biieu is a family of atoms such that for all p, ge M there holds either
B,=B,or B,nB,=0. '

Indeed in the case when C,nC,e A, we have B, c C,— C,, and so
B,nB,=0.

In the opposite case (C,n C)) ¢ (A, n A,). Then by (c) it is easy to see that
B,u B, = C,n C, and thus for B,, B, there holds:
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(3) B,=(C,nC) —(u{Ci: C:nCe b }u{C,nC,— C;: (C,— C)e. 1)),
4) B,=(C,nC) —(u{C;i: C,nCiet }ulC,nC,—C: (C,— C)e. 1))
If for all e M the following condition is satisfied

5 CnC  iTC,nCe. b,

then, in this case, from (3) and (4) we get B, = B,.

If (5) is not satisfied, then there exists re M such that C.n C,e. 1, but
(C,— C)e.t,. In this case B,< C, - C, and B,c C,—(C,— C)=C,nC,
and thus B,n B, = 0. So we have proved (2).

Thus we have the family of atoms {B,},.,, 0 # M < N satisfying the property
(2). Denote I, ={ieM: B,= B,}. By (2) {{,: ge M} form a partition of the
set M.

Let ge M be arbitrarily choosen. Then by Lemma 8 there exists A€ B, |

|,_c/<ﬂ,t;>. Of course since Ae( N ,Jf}) by Lemma 3, (1) we have

iel ie.V~Iq
AquLc;/(ﬂ A‘k> and so AeCId(ﬂ JQ-)-
ke N ke N

Remark 3. Let v be a measure and 4" be its null system. Then we shall
say that a measure v satisfies the countable chain condition (shortly CCC) if
there (¥ — .47) C holds. A finite measure satisfies CCC (see, €.g., [2, Section 44]
or [5] Lemma | and Theorem 2). Thus the supposition (# — .#7) C in Lemma 9
is weaker than that of finiteness of the measure v.

If vis a o-finite measure, then for all Fe% there exists a sequence E, of

pairwise disjoint sets such that £ = ( ) E,. Then we have v = ) Ve, Be-

n=1 n=1

cause v are finite for their null system there (.# — .V ) C holds. Then since

(& — N = (& — A) we obtain (¥ — A;)C. Thus the supposition of
n=1

Theorem 4 that for all E€ % there holds that (/% — A7) C is more general than
the supposition of o-finiteness of a measure v.

For a proof and applications of Lemma 9 see Lemma 2, Corollary 1 and
Corollary 2 from [4].

The proof of Lemma 10 is straightforward.

Lemma9. Let M be a o-ideal, 9 € /" < M and (M — N) C. Then there exists
Fe Ml such that Ve = M.

Lemma 10. Let /" < &, G, FeS. Then Ge A (NF) iff G Fesd (N).

Theorem 3. Let M be a o-ideal on &, 0e M = N and let (M — V) C hold.
Then there exists Fe M such that Ae A (M) iff A — Fe f(N). ‘

In particular {A — F: Ae oA (M)} ¢ L(N),

{A: A — Fed(N)} c A(M).

Proof. By Lemma 9, there exists Fe .# such that # = #.. By Lemma 10,

Ae A (M) T A — Fedd(N).
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The following theorem is a generalization of Theorem 2.4 trom [10}. Our
proor is more straighttorward and it does not use singularity.

Theorem 4. Let .4/ be a o-ideai,Ve.v < .4 and et for ull E€ ¥ {.&t — .+ ) C
hold. Then we have :

(1) If A" is nonatomic. then .4 is nonatomic.
(2) If .47 is atomuc, then 4 is atomic.

Proof. (1) Indirectly. Suppose 4 e€./(.#). Then since (.4 —.Vv;)C. by
Theorem 3 there would exist F<.# such that (4 — F)e 2/(.¥,). According to
Lemma 10, 4 — Fe.«/(.+ ), which is a contradiction with the nonatomicity of .4".

(2) Let A¢.#. Take Fe.# (from Theorem 3) such that (.¥}),. = .#. Then
by (g) we have 4 — F¢ .4 and thus 4 — F¢ 4. Since .Y is atomic. there exists
Be(Ad — F)| A(N).As B= Bn (4 — F) by Lemma 10, Be &/((.¥,)r.) and thus
Be s (M).

The following theorem is a semigroup valued version of Theorem 1, Theo-
rem 2 and Theorem 1.2 from [10]. lndeed if u is a set function with values in

a topological semigroup such that y = Z u, and ./ resp. 4, are null system of
n=1

u and p,, respectively, then for the null system .# of u there holds .# <=

cﬂ.//i.

n=1

Theorem 5. Let {.//lk}k -, be a sequence of hereditary subfamilies of & and .#
be a o-ideal such that ﬂ M, < M and let (M — M) C hold for all ke N. Then

k=1
there exists Fe . such that

() {4—F: Aed(H) = | {AE () L(M): A is pairw. indecomp. for

P#Mc N keM
keM}ﬁ( N dlz,().

keN-M
(2) If M, are nonatomic for all ke N, then . is nonatomic as well.

If M, are o-ideals, then
(3) if #, are atomic for all ke N, then ./ is atomic. "
Proof. (1) According to Theorem 3, {4 — F: Ae (M)} szi(ﬂ u//k>-

w k=1
For </ ( ﬂ ,///k> we use Theorem 1 and so we obtain the inclusion (1).
k=1
(2) is implied by (1) because if .#, are nonatomic, then the right-hand side
of inclusion is empty.
(3) If all ., are atomic, then by Theorem 2 ﬂ A, is atomic and according

to Theorem 4 .# is atomic too. k=t
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4. Applications

The results concerning the atoms of set functions are in the present paper
presented abstractly for the families of sets. Namely if v is a set function with
values in the semigroup (G; +), its null system A" ={Fe¥: W(E) =0} is a
subfamily of &. Then if the null systems of the set functions satisfy the hypothe-
sis of Theorems 1 to 5, these theorems can be applied even to semigroup valued
set functions. For these applications see [4, Corollaries 1 to 6}. However, if vis
a set function with values in the extended set of real numbers, then by Remark 1
there holds .«/(v) = &/(."), so the results concerning the atoms of subfamilies
will be generalizations of the results for real valued set functions.

Thus we obtain besides others the following results:

Theorem 1 besides others expresses that for subadditive nonnegative set
functions g, with the null systems .7, there holds

-

= U [{A € () «/(u): A is pairw. indecomp. for ke M} ﬂ( N L//,\.)].
O0#FMc N keN - M

keM

Moreover, the above equality holds if instead ) u, we take an arbitrary u

n=1

having a null system equal to (") .%.
k=1
Theorem 2, for example, expresses that the countable sum of nonnegative

atomic measures is atomic, too.

Theorem 3 is valid, for example, for set functions g, v such that y is a
nonnegative measure dominated by a set function v satisfying CCC. Accorting
to it there exists F p-null such that Ae.o/(u) iff A — Fe/(v).

Theorem 4 is valid, for example, for a nonnegative measure dominated by a
o-finite set function v. According to it, if v is nonatomic (atomic), so u is
nonatomic (atomic), too.

Theorem 5, (1) (Theorem 5, (3)) is a semigroup valued version of Theorem 1
(Theorem 2). Theorem 5, (1) and (2) is valid for example for semigroup valued
set functions y,, whose null systems are hereditary and the null system of the set

x
function ) u,is a o-ideal.

n=1

I point also to the possibility of succesive applications of the results of the
present paper to set valued set functions (see, e.g., [1, 7,9, 12]). If (G; +) is a
group and M : & — (2° — {0}) is a set valued set function such that M(Q) = {0},
then we can put as a null system ./ = {Ee€¥: M(FE) = {0}} and so the results
of Theorems 1 to 5 can be applied for set valued set functions.

88



REFERENCES

[1] ARSTEIN, Z.: Set valued measures. Trans. Amer. Math. Soc. 165, 1972, 103—121.

[2] BERBERIAN, S. K.: Measure and Integration, New York 1965.

[3] CAPEK, P.: Théoremes de décomposition en théorie de la mesure I. II. Publications du
Séminaire d’Analyse de Brest, juin 1976.

[4] CAPEK. P.: Decomposition theorems in measure theory. Math. Slovaca 31, 1981, No. 1,
53--59.

[5] CAPEK, P.: The pathological infinity of measures. Suppl. ai Rendiconti del Circolo Mat. Di
Palermo. Série 11-6, 1984.

[6] FICKER, V.: On the equivalence of a countable disjoint class of sets of positive measure and
a weaker condition than total o-finiteness of measures. Bull. Austral. Math. Soc. 1, 1969,
237 -243.

[7] GODET-THOBIE, C.: Multimesures et multimesures de transitions. Thésc. Montpellier. 1985.

[8] HAHN, H.—-ROSENTHAL, A.: Set Functions. The University of New Mexico Press 1948.

[9] HIAIL F.: Radon-Nikodym theorems for set-valued measures. Journal of Miltiv. Analysis 8,
1978, 96—118.

[10] JOHNSON, R. A.: Atomic and nonatomic measures. Proc. Amer. Math. Soc., 25, 1970,
650—655.

[11] SIKORSKI. R.: Boolean Algebras. Springer-Verlag 1969.

[12] DREWNOWSKI, L.: Additive and countably additive correspondences, Commentationes
Mathem. XIX 1976.

[13] CAPEK, P.: Abstract comparison of the properties of infinite measures. Acta Math. Univ.
Comen. (to appear).

Received October 28, 1986 Katedra matematickej analyzy
MFF UK
Matematicky pavilon
Mlynska dolina
842 15 Bratislava

ATOMbBI CYUETHOM CYMMbl ®VYHKLIUIT MHOXECTB
Peter Capek
Pe3ome

B pa6oTe HaiileHO npeACTaB/IeHHE MHOXECTBA aTOMOB HEOTpULIATEIbHOM QYHKIIMHM MHOXCTBA,
BO3HHMKAIOLICH KAK CYCTHAS CYyMMa HEOTpHIATEIbHbIX QYHKIMH MHOXECTB.

AHAJIOTHYHBIH Pe3yJIbTAT NPUBOAMTCA TAKXe MJIA MEp CO 3HAYCHUAMH B moayrpynne. Kpome
TOro, B CTaThe MOKA3aHO, YTO CyMMa CYETHOIO Ka4eCTBa aTOMHYECKHX Mep ABJISIETCH ATOMHYECKOM
Mepoit.

OTH U ApYyrue pe3yabTaThl MONy4YCHbI B abCTpakTHOH opMe, KOria Mepa 3aMeHEHa MOHATHEM
o-uacalt, i 6osiee obLel CHCTEMOM MHOXECTB.
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