[1] BEHZAD M., CHARTRAND G.:
Introduction to the Theory of Gгaphs. Allyn and Bacon, Boston 1971.
MR 0432461
[2] CHARTRAND G., HOBBS A. M., JUNG H. A., NASH-WILLIAMS C. St. J. A.:
The square of a block is hamiltonian connected. J. Comb. Theory 16B, 1974, 290-292.
MR 0345865 |
Zbl 0277.05129
[3] FAUDREE R. J., SCHELP R. H.:
The squaгe of a block is stгongly path connected. J. Comb. Theory 20B, 1976, 47-61.
MR 0424609
[4] FLEISCHNER H.:
The squaгe of every two-connected graph is hamiltonian. J. Comb. Theory 16B, 1974, 29-34.
MR 0332573
[5] FLEISCHNER H.:
In the squaгe of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivaient concepts. Monatshefte Math. 82, 1976, 125-149.
MR 0427135
[6] FLEISCHNER H., HOBBS A. M.:
A necessary condition foг the square of a graph to be hamiltonian. J. Comb. Theory 19, 1975, 97-118.
MR 0414433
[9] NEBESKÝ L.:
A theoгem on hamiltonian line graphs. Comment. Math. Univ. Carolinae 14, 1973, 107-111.
MR 0382068
[11] NEUMANN F.:
On a certain ordering of the vertices of a tгee. Časopis pěst. mat. 89, 1964, 323-339.
MR 0181587