Previous |  Up |  Next

Article

References:
[1] BEHZAD M., CHARTRAND G.: Introduction to the Theory of Gгaphs. Allyn and Bacon, Boston 1971. MR 0432461
[2] CHARTRAND G., HOBBS A. M., JUNG H. A., NASH-WILLIAMS C. St. J. A.: The square of a block is hamiltonian connected. J. Comb. Theory 16B, 1974, 290-292. MR 0345865 | Zbl 0277.05129
[3] FAUDREE R. J., SCHELP R. H.: The squaгe of a block is stгongly path connected. J. Comb. Theory 20B, 1976, 47-61. MR 0424609
[4] FLEISCHNER H.: The squaгe of every two-connected graph is hamiltonian. J. Comb. Theory 16B, 1974, 29-34. MR 0332573
[5] FLEISCHNER H.: In the squaгe of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivaient concepts. Monatshefte Math. 82, 1976, 125-149. MR 0427135
[6] FLEISCHNER H., HOBBS A. M.: A necessary condition foг the square of a graph to be hamiltonian. J. Comb. Theory 19, 1975, 97-118. MR 0414433
[7] HARARY F.: Graph Theory. Addison-Wesley, Reading (Mass.) 1969. MR 0256911 | Zbl 0196.27202
[8] HOBBS A. M.: The square of a block is vertex pancyclic. J. Comb. Theory 20B, 1976, 1-4. MR 0416980 | Zbl 0321.05135
[9] NEBESKÝ L.: A theoгem on hamiltonian line graphs. Comment. Math. Univ. Carolinae 14, 1973, 107-111. MR 0382068
[10] NEBESKÝ L.: On pancyclic line graphs. Czechoslovak Mat. J. 28 (103), 1978, 650-655. MR 0506438 | Zbl 0379.05045
[11] NEUMANN F.: On a certain ordering of the vertices of a tгee. Časopis pěst. mat. 89, 1964, 323-339. MR 0181587
Partner of
EuDML logo