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ON SQUARES OF COMPLEMENTARY GRAPHS

LADISLAV NEBESKY

By a graph we mean a graph in the sense of [1] or [7]. Let G be a graph. We
denote by V(G), E(G), G, L(G), and d(G) its vertex set, edge set, complement,
line graph, and diameter, respectively. If G is disconnected, then we put d(G) = .
The cardinality of V(G) is called the order of G. We say that G is hamil-
tonian-connected if for every pair of distinct vertices u, v € V(G), there exists
a hamiltonian path which connects u« and v.

If G is a graph, then by the square G’ of G we mean the graph with
V(G*)= V(G) and

E(G)={uv;u,veV(G) and 1=ds(u, v)=2},

where ds(u, v) denotes the distance between u and v in G.

Squares of graphs have been studied intensively, first of all from the point of view
of their hamiltonian properties. Fleischner [4] has proved that if G is a 2-connected
graph, then G? is hamiltonian. This result was improved in [2], [8], and [3]; in [2]
Chartrand, Hobbs, Jung, and Nash—Williams have proved that if G is a 2-con-
nected graph, then G? is hamiltonian-connected. Hamiltonian properties of
squares of trees were studied in [11]. For some further results concerning
hamiltonian properties of squares of graphs the reader is referred to [5] and [6].

The following theorem gives a sufficient condition for the square of a graph to be
hamiltonian-connected. Note that K, denotes the complete graph of order p, and
K, — e denotes the graph obtained from K, by deleting exactly one edge.

Theorem. Let G be a graph of order p Z2. If K, # (G)*#K, —e, then G* is
hamiltonian-connected.

Proof. Assume that K, # (G)* # K, — e.Since (G)* # K,,we have that d(G)> 2. .
Let d(G) = . Then G is disconnected, and therefore d(G)<2. This means that G>
is complete, and thus hamiltonian-connected.

We shall assume that d(G)<. Then G is connected. Since d(G)>2, there
exist u,, u, € V(G) such that do (u,, u,) = 3. Hence, p Z4. For i = 1, 2 we denote

Vi={ve V(G -u,—u,); uv e E(G)).
247



Since G is connected and dgs(u,, u,)>1, we have that V,#@# V,. Since
de(u,, u;)>2, we have that VinVv,=40.

We shall distinguish two cases:
Case 1. V,uV,= V(G —u, — u,) Ifforevery v, € V, and v, € V, there holds that

v,v, € E(G), then for every pair of distinct vertices 1’ and u” with the property that
{u', u"} # {u,, u,) there holds that ds(u’, u”")=2, and thus (G )’ =K, — e, which is
a contradiction. This means that there exist v'e V, and v”"e V, such that
v'v"¢ E(G). We denote by F, tke graph with V(F,)= V(G) and

E(F)) = {uuz, uv’, v'v", v"u; }U
u{u,w”; w'e Voju{u,w'; w e Vi),

Obviously, F, is a connected graph which contains exactly one cycle. Since
VinV,=0, we have that F, is a subgraph of G. It is easy to see that (F,)’ 1s
hamiltonian-connected. Since V(F,)= V(G), we have that G° is hamiltonian-

connected.

Case 2. V,uV,# V(G — u, — u,). Consider an arbitrary vertex v € V(G —u, —
u,) — (V,uV,). We denote by F, the graph with V(F,)= V(G) and

E(F;) = {vour, u,utz, U300}
U{uw,; woe V(G —vo—uy—uz) — Viyulu,w,; wie Vi),

Obviously, F, is a connected graph which contains exactiy one cycie. It is easy to
see that (F,)’ is hamiltonian-connected. Since F, is a spanning subgraph of G, we
have that G? is hamiltonian-connected, which completes the proof.

We denote by P, the path of order four. Obviously, P, = P,, and (P.,)* =K, —e.

Corollary. Let G be a graph different from P,. Then G* or (G)* is hamil-
tonian-connected.

Remark 1. A graph of order p 21 is called panconnected if for every pair of
distinct vertices u, v € V(G) and for every integer j with the property that
de(u, v)=j=p —1, there exists a path of length j which connects ¥ and v in G.
Fleischner [5] has proved that if G is a graph, then G* is panconnected if and only if
G? is hamiltonian-connected.

Remark 2. In [9] it was proved that if G 1 a graph of order =3, thon hcre
exists G' € {G, G} such that G’ is connected and L (G') is hamiltoman. This re u’t
was improved in [10], where it was also shown that for every integer p =1, there
exists a graph G, of order p such that neither L(G,) nor L(G,) is hamiltonian-

connected.
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O KBAJPATAX JOIIONHUTEJIHBIX IT'PA®OB
JlagucnaB Heb6eckuit
Pesome
Ioxka3siBaeTcs cienytomast Teopema: Iycrs G—rpag ¢ p =2 pepurnnamu. Ecmn K, + (G # K, —e,

o G* — ramunbToHOBO cBsa3HbiH. (G 06o3HayaeT mononnenue rpacda G, K, — nonwblit rpag ¢ p
BepurdHamu M K, —e — rpac, nonayyeHuniii u3 K, ynajaeHuem ogsoro pebpa).
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