Previous |  Up |  Next

Article

References:
[1] ALDA V.: On 0-1 measuгe for projectors. Aplikace Matematiky 25, 1980, 373-374. MR 0590490
[2] BRABEC J., PTÁK P.: On compatibility in quantum logics. Foundation of Physics, 12, 1982, 207-212. MR 0659779
[3] GREECHIE R.: Orthomodular lattices admitting no states. Journ. Comb. Theory 10, 1971, 119-132. MR 0274355 | Zbl 0219.06007
[4] GUDDER S.: Spectral methods for a generalized probability theory. Trans. Amer. Math. Soc. 119, 1965, 420-422. MR 0183657 | Zbl 0161.46105
[5] GUDDER S.: Stochastic Methods in Quantum Mechanics. Elsevier North Holland, Inc., 1979. MR 0543489 | Zbl 0439.46047
[6] KLUKOWSKI J.: On Boolean orthomodular posets. Demonstratio Mathematica VIII, 1975, 405-422. MR 0369188 | Zbl 0312.06007
[7] MAEDA F., MAEDA S.: Theory of Symmetric Lattices. Berlin and New York, Springer-Verlag, 1970. MR 0282889 | Zbl 0219.06002
[8] MAC LANE S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, 5. Springer-Verlag, New York, Heidelberg, Berlin, 1971. MR 0354798 | Zbl 0232.18001
[9] MACZYNSKI M., TRACZYK T.: A characterization of orthomodular partially ordered sets admitting a full set of states. Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 21, 1973, 3-8. MR 0314708 | Zbl 0265.06003
[10] MAŇASOVÁ V., PTÁK P.: On states on the product of logics. Int. J. Theor. Phys. 20, 1981, 451-456. MR 0632598 | Zbl 0482.03030
[11] PTÁK P.: Weak dispersion-free states and the hidden variables hypothesis. J. Math. Phys. 24, 1983, 839-841. MR 0700618
[12] PULMANNOVÁ S.: Compatibility and partial compatibility in quantum logics. Ann. Inst. Henri Poincare 34, 1980, 391-403. MR 0625170
[13] VARADARAJAN V.: Geometry of Quantum Theory. 1. Princeton, New Jersey, 1968. Zbl 0155.56802
[14] ZIERLER N., SCHLESSINGER M.: Boolean embeddings of orthomodular sets and quantum logics. Duke J. Math. 32, 1965, 251-262. MR 0175520
Partner of
EuDML logo