[1] DIXMIER J.: Les Algébres ďopérateurs dans ľespace Hilbertien. Gauthier-Villars, Paris, 1969.
[2] DUNFORD N.-SCHWARTZ J. T.:
Linear Operators. Part I: General Theory. Interscience, New York, 1958.
MR 1009162
[3] HALMOS P. R.:
Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea, New York, 1951.
MR 1653399 |
Zbl 0045.05702
[4] HILLE E.-PHILLIPS R. S.:
Functional Analysis and Semigroups. Amer. Math. Soc. Colloq. Publ. 31, Providence, RI, 1957.
MR 0089373 |
Zbl 0078.10004
[5] KELLEY J. L.:
Commutative operator algebras. Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 598-605.
MR 0051440 |
Zbl 0049.20702
[6] PANCHAPAGESAN T. V.:
Multiplicity theory of projections in abelian von Neumann algebras. Rev. Colombiana Mat. 22 (1988), 37-48.
MR 1023821 |
Zbl 0687.46039
[7] PANCHAPAGESAN T. V.:
Unitary invariants of spectral measures with the $CGS$-property. Rend. Circ. Mat. Palermo (2) 42 (1993), 219-248.
MR 1244538 |
Zbl 0793.47019
[8] PANCHAPAGESAN T. V.:
Orthogonal and bounded orthogonal spectral representations. Rend. Circ. Mat. Palermo (2) 44 (1995), 417-440.
MR 1388755 |
Zbl 0858.47014
[9] PANCHAPAGESAN T. V.:
Spatial isomorphism of abelian von Neumann algebras and the spectral multiplicity theory of Halmos. In: International Workshop on Operator Theory, Cefalacuteu (Palermo), July 14-19, 1997. Suppl. Rend. Circ. Mat. Palermo (2) 56 (1998),179-189.
MR 1710835
[10] PANCHAPAGESAN T. V.:
A classification of spectral measures with the $CGS$-property. Atti. Sem. Mat. Fis. Univ. Modena 46 (1999), 67-91.
MR 1727412 |
Zbl 0951.28006
[11] STONE M. H.:
Linear Transformations in Hilbert Spaces and Their Applications to Analysis. Amer. Math. Soc. Colloq. Publ. 15, Amer. Math. Soc, Providence RI, 1932.
MR 1451877