Previous |  Up |  Next

Article

References:
[1] DIXMIER J.: Les Algébres ďopérateurs dans ľespace Hilbertien. Gauthier-Villars, Paris, 1969.
[2] DUNFORD N.-SCHWARTZ J. T.: Linear Operators. Part I: General Theory. Interscience, New York, 1958. MR 1009162
[3] HALMOS P. R.: Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea, New York, 1951. MR 1653399 | Zbl 0045.05702
[4] HILLE E.-PHILLIPS R. S.: Functional Analysis and Semigroups. Amer. Math. Soc. Colloq. Publ. 31, Providence, RI, 1957. MR 0089373 | Zbl 0078.10004
[5] KELLEY J. L.: Commutative operator algebras. Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 598-605. MR 0051440 | Zbl 0049.20702
[6] PANCHAPAGESAN T. V.: Multiplicity theory of projections in abelian von Neumann algebras. Rev. Colombiana Mat. 22 (1988), 37-48. MR 1023821 | Zbl 0687.46039
[7] PANCHAPAGESAN T. V.: Unitary invariants of spectral measures with the $CGS$-property. Rend. Circ. Mat. Palermo (2) 42 (1993), 219-248. MR 1244538 | Zbl 0793.47019
[8] PANCHAPAGESAN T. V.: Orthogonal and bounded orthogonal spectral representations. Rend. Circ. Mat. Palermo (2) 44 (1995), 417-440. MR 1388755 | Zbl 0858.47014
[9] PANCHAPAGESAN T. V.: Spatial isomorphism of abelian von Neumann algebras and the spectral multiplicity theory of Halmos. In: International Workshop on Operator Theory, Cefalacuteu (Palermo), July 14-19, 1997. Suppl. Rend. Circ. Mat. Palermo (2) 56 (1998),179-189. MR 1710835
[10] PANCHAPAGESAN T. V.: A classification of spectral measures with the $CGS$-property. Atti. Sem. Mat. Fis. Univ. Modena 46 (1999), 67-91. MR 1727412 | Zbl 0951.28006
[11] STONE M. H.: Linear Transformations in Hilbert Spaces and Their Applications to Analysis. Amer. Math. Soc. Colloq. Publ. 15, Amer. Math. Soc, Providence RI, 1932. MR 1451877
Partner of
EuDML logo