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AN ABELIAN VON N E U M A N N ALGEBRA 

T . V. PANCHAPAGESAN 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. Let A be an abelian von Neumann algebra of operators on a 
Hilbert space H and let G(-) be its canonical spectral measure (see Definition 
5) on the Borel subsets of its maximal ideal space M. By describing Kelley's 
multiplicity function 0 of A in terms of the uniform multiplicity function of 
Halmos, the basic s tructure theorem of Kelley [KELLEY, J. L.: Commutative 
operator algebras, Proc. Nat . Acad. Sci. U.S.A. 38 (1952), 598-605] is deduced 
from the theory of orthogonal spectral representations applied t o G(-). When the 
commutant A' is countably decomposable, G(-) has CGS-property in H and in 
this case, 0 is also described in terms of the multiplicity functions m and mc 

of G(-) (see Definition 4). 

Let A be an abelian von Neumann algebra of operators on a Hilbert space 
H with A' its commutant, M its maximal ideal space and G(-) its canonical 
spectral measure (see Definition 5). K e l l e y [5] defined a multiplicity function 
cj) on M and result 5.1 of [5] (namely, the basic structure theorem) determines 
H and A, up to unitary equivalence, in terms of </>. 

In a series of papers [6], [7], [8], [9], [10], we gave a unified approach to 
deduce or generalize all the important results known on the problem of unitary 
invariance. (See [10; Introduction].) The present paper forms the last part of the 
series and deduces Kelley's basic structure theorem from the theory of orthogonal 
spectral representations developed in [8]. For this, we describe </> in terms of the 
uniform multiplicity function of H a 1 m o s [3]. 

When A' is countably decomposable, G(-) has CGS-property in H and hence 
has two multiplicity functions mp and mc on M corresponding to the discrete 
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part pG and the continuous part cG (see Definition 4). In Theorem 5 wre describe 
cf) in terms of ra_ and mr. Consequently, a spatial isomorphism theorem in terms 
of m and mc holds for A. Assuming Theorem 5, this isomorphism result has 
been obtained in [10; Corollary 2], 

1. Preliminaries 

In this section we fix notation and terminology and give some definitions and 
results from the literature to make the paper self-contained. 

Let H, Hr and H2 denote (complex) Hilbert spaces of arbitrary dimension 
( > 0). The closed subspace spanned by a subset X of a Hilbert space is denoted 
by [X]. ® Mi is the orthogonal direct sum of a family of mutually orthogonal 
closed subspaces Mi of a given Hilbert space or of Hilbert spaces {M1}1. 

If P is a projection in a von Neumann algebra 72. on IF, then Cp denotes the 
central support of P. For x G II, [72.x] = [Rx : I? G 72.] and, sometimes, it also 
denotes the orthogonal projection with range [72.x]. By an isomorphism between 
two von Neumann algebras we mean a *-isomorphism. Yl © A denotes the 
direct sum of the von Neumann algebras A{. The rest of the terminology and 
notation in von Nuemann algebras is standard and we follow D i x m i e r [1]. 

Let <S be a a-algebra of subsets of a non empty set Q. Let E(-) be a spectral 
measure on <S with values in projections of H. For x G II, pE(x) denotes the 
measure ||F?(-)x||2 on <S. Let £(<S) be the set of all finite (positive) measures 
on <S. For fu1,/u2 € £(<S), w e write fi1 = /i2 if \ix <ti /i2 and p2 <C fi1. Clearly, 
— is an equivalence relation on £(<S). 

For fi G £(<S), the projection CE(p) is defined as the orthogonal projection 
on the closed subspace {x G II : pE(x) <^ fi] and it follows from [3] that 
CE(ji) G W, where W is the von Neumann algebra generated by the range of 
E(-). The multiplicity uE(p) of \i G S(5) relative to E(-) is defined by 

uE(p) = min{H-multiplicity of CE(v) : 0 ^ / v C / i , v G S(<S)} 

if /i / 0 and uE(0) = 0, where the II-multiplicity of CE(v) is the multiplicity 
of CE(v) relative to E(-) in the sense of H a l m o s [3]. nEY>(S) i s s a i d t o h a \ e 
uniform multiplicity uE(fi) relative to E(-) if uE(v) = uE(fi) for 0 ^ v <£i /i 
i / € S ( 5 ) . 

For x G II, let ZE(x) = [E(a)x : a G S] . 
Now wre quote some definitions and results from [7], [8]. 

D E F I N I T I O N 1. A spectral measure E(-) on <S is said to have CGS-property 
in II if there exists a countable set X in II such that [E(a)x : x G X, a G <S] 
= H. 
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DEFINITION 2. Let E(-) be a spectral measure on S with values in projections 
of the Hilbert space II. Then H is said to have an ordered spectral decomposition 
(briefly, OSD) relative to E(-) if 

Iv 

H = @zE{Xi), Nenyj{oo), 
1 

where the x{ arc non zero vectors in II and 

pE(xx) > pE(x2) > . . . . 

TV is called the OSD-multiplicity of E(-). (N is uniquely determined by E(-) 
by [7; Theorem 3.11].) When IV = oo, we say that the OSD-multiplicity of E(-) 
is N0. 

By [7; Theorem 3.7], II has an OSD relative to E(-) if and only if E(-) has 
CGS-property in II. 

NOTATION 1. Let fi, e S ( 5 ) , [x- / 0 , j G J , and let H = 0 L2([i.), where 
jGJ 

L0(fj ) = L2(Q,S:fi •). In the sequel, by £?(•) we shall denote the set function 
on S given by 

E(-)(fj)jeJ = (*<. , / , ) , , ( / , ) , € # . 

DEFINITION 3 . Let {/in}jv, J V G N U {OO}, be non zero measures in £(«S) 
Iv 

with /ij ^> /I9 ^> .... An isomorphism C7 from II onto K = 0 L 2 ( / i n ) is 
i 

called an ordered spectral representation (briefly, OSR) of II relative to E(-), 
if UE(-)U~l = E(-). N is called the OSR-multiplicity of E(-) (since IV is 
uniquely determined by E(-) by [7; Theorem 4.2] and it coincides with its 
OSD-multiplicity). 

The sequence {^n}i is called the measure sequence of the OSR U. Two 
OSRs C/j and U2 of H1 and II2 relative to the spectral measures El(-) and 
E2(-) defined on the a -algebra S with the corresponding measure sequences 

{//; } ! j and {/J, } . ^ are said to be equivalent if Nx = N2 and fij } = fi 

for all j . 

DEFINITION 4. Let X be a Hausdorff topological space, S = B(X), the 
O-'ilgebra of all Borcl subsets of X (i.e., the cr-algebra generated by the open 
sets in A"), and E(-) a spectral measure on S with CGS-property in H. Then 
the discrete part pE of E(-) is defined as the set {t e X : E({t}) ^ 0 } . 
The continuous part cE of E(-) is defined as the set X\pE. We shall write 
M(E) = E(pE)H and 11(E) = E(cE)H = HQ M(E). 
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The multiplicity function m on X relative to E(-) is defined as m (t) = 0 if 
teX\pE and mp(t) = d imE({t})H if t G pE, where mp(t) = N0 if E({t})H 
is infinite dimensional. 

N 
Let TZ(E) = 0 Z F ( ? / . ) be an OSD of TZ(E) relative to F(-) = E(-)E(cE). 

1 
Then the multiplicity function mc on X relative to E(-) is denned as follows: 

(i) mc(t) = 0 if 11(E) = {0} or if 11(E) ^ {0} and there exists an open set 
U containing t for which E(U)yx = 0. 

(ii) mc(t) = n G N if yk do exist for all k = 1 ,2, . . . , n and for every open 
set U containing t we have E(U)yk ^ 0 for k = 1, 2 , . . . , n , while Ar = n 
or Vn+i does exist and E(U)yn_{_1 = 0 for some open set U containing t. 

(iii) mc(t) = K0 if TV = co and for every open set U containing t we have 
E(U)yk / 0 for each k G N. 

NOTATION 2. Let W be the von Neumann algebra generated by the range of 
a spectral measure E(-) on S with values in projections of H and let TV' = 
zC 0 ^ / r Qn k° the type Jn-direct sum decomposition of IV ' . Then by {Qn}nej 

neJ 
we denote the collection of these projections in the above decomposition and 
{n : n G J} is denoted by Mw as well as by ME. Mw (resp. M E ) is called the 
multiplicity set of TV (resp. of E(-)). The multiplicity and uniform multiplicity 
of projections in TV in the sense of H a l m o s [3; pp. 100-101] will be referred 
to as H-multiplicity and UH-multiplicity, respectively. 

DEFINITION 5. Let A be an abelian von Neumann algebra on H and let M 
be its maximal ideal space. If B(M) is the cr-algebra of the Borel sets in M, 
then the unique spectral measure G(-) on B(M) which associates (under the 
inverse of the Gelfand mapping) with each a G B(M), the projection operator 
corresponding to the characteristic function of the clopen set T(cr) for which 
T(cr)Acr is meagre in M, is called the canonical spectral measure of A (see 
[4; pp. 157-163]). If Ai is an abelian von Neumann algebra on H{, then its 
maximal ideal space and canonical spectral measure are denoted by Mt and 
G^(-), respectively, for i = 1,2. 

NOTATION 3. If A is an abelian von Neumann algebra on H and if G(-) is 
its canonical spectral measure, then the H-multiplicity and UH-multiplicity of a 
projection P in A are with respect to G(-) (since A is the von Neumann algebra 
generated by the range of G(-)). The multiplicity set MA is as in Notation 2 
but with TV replaced by A and E(-) by G(-). 

Let E(-) and IV be as in Notation 2. As observed in [6], a projection P' 
in IV' is abelian if and only if it is a row projection with respect to E(-) (in 
the sense of H a l m o s [3]) and the column generated by a projection in TV' is 
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the same as its central support. Thus [3; Theorem 66.4] of H a l m o s can be 
reformulated as follows: 

PROPOSITION 1. A non zero projection F in W has UH-multiplicity n rela­
tive to E(-) if and only if there exists an orthogonal family {E'a}cteJ of abelian 
projections in W' such that card J = n, CE, = F for each a € J and 

Y^ E'a = F; in other words, if and only if W'F is of type In or, equivalently, 
aeJ 
if and only if 0 ^ F < Qn where the Qn are the central projections in the type 
Indirect sum decomposition of W'. 

COROLLARY 1. If A is an abelian von Neumann algebra with the canonical 
spectral measure G(-), then a non zero projection P G A has UH-multiplicity 
n (in the sense of Halmos [3]) with respect to G(-) if and only if n G MA 

and P < Qn, where the Q are the central projections of the type Indirect sum 
decomposition of A'. 

DEFINITION 6. Suppose E(-) is a spectral measure on S with values in pro­
jections of H. Let {/Jj}jej be an orthogonal family in £(<S) with each //• 

having uniform multiplicity uE(jjij) = u • > 0 for j G J . Let H = 0 0L 2 ( jU. ) 
jeJ UJ 

and suppose U: H —•> H is an isomorphism of H onto H. Then U is called 
an orthogonal spectral representation (briefly, OTSR) of H relative to E(-) if 
UE(-)U~1 = E(-) (see Notation 1). The set {^j}jeJ is called the measure 
family of the OTSR U. Suppose Ul is an OTSR of the Hilbert space Hi rel­
ative to the spectral measure Et(-) defined on S with the measure family F{ 

for i = 1,2. Then we say that Ux and U2 are equivalent and write Ux ~ U2 if 
uE (n) = uE (fi) for ii G F1UF2 and the multiplicity functions uE and uE are 
uniform on FlUF2. An OTSR U of H relative to E(-) with the measure family 
F is called a bounded OTSR (briefly, BOTSR) if Fn = {fi G F : uE(fi) = n} 
is bounded in E(5) for each n G ME. A BOTSR U of H relative to E(-) with 
the measure family F is called a BOTSR with countable multiplicities (briefly, 
COBOTSR) if uE(fi) < N0 for all fi G F. 

DEFINITION 7. Let E(-) and W be as in Notation 2. Then E(-) is said to 
have generalized CGS-property in H if the central projections {Qn} in the type 
Indirect sum decomposition of the commutant W' are countably decomposable 
in W. 

By [7; Theorem 5.6] we have the following result: 

PROPOSITION 2. The spectral measure E(-) has CGS-property (resp. general­
ized CGS-property) in H if and only if H admits a COBOTSR (resp. a BOTSR) 
relative to E(-); consequently, if and only if every OTSR of H relative to E(-) 
^s a COBOTSR (resp. a BOTSR). 
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In the sequel, A will denote an abelian von Neumann algebra on if, with its 
maximal ideal space M and its canonical spectral measure G(-). 

The following proposition is proved in [10]. It plays a key role in Section 4 
below. 

N 
PROPOSITION 3. If H = ®ZE(x{), J V G N U {OO}, is an OSD of H rela-

I 
tive to a spectral measure E(-) on S with values in projections of H, then the 
following assertions hold: 

(i) CE(pE(x1))=I andCE{pE(Xj))=I- £ Qn, l<j<N,jeN. 
nGM^nN,n<j 

(ii) / / ME = {nx < n2 < ... } U {tt0}, then 

(a) PE(xni) > PE(*J) = PE(xni+1) for n(<J< n i + 1 , i = 0 ,1 , 2 , . . . , 

where n0 = 0 and the term corresponding to xno is omitted. 
(b) pE(Xj) > fiQ^ , j £ N, where CE(vQ^ ) = Q*Q. 

(iii) / / ME = {nx < n2 < ••• < nk} U {K0}, then (ii)(a) bo/ds /or i = 
0 , 1 , 2 , . . . , k — 1 and 

(c) PEOEJ) = I*Q for j > nk, j £ N, iv/iere fiQ^ is as in (ii)(b). 

Here k = 0 is also permissible (in the sense that ME n N = 0) . 

Then, in that case, ME = {N0} and (c) holds for all j £ N. 
(iv) If ME = {nx < n2 < . . . } , then (ii)(a) fto'ds and there does not exist 

v £ S (5 ) mtf* CE(i/) ^ 0 such that pE(xj) > v for all j £ N. 

(v) 7/ M E = {n1 < n2 < • • • < nk), then (ii)(a) Aotas /or z = 0 , 1 , 2 , . . . 
. . . , / c - l . 

(vi) If N = oo, then one and only one of (ii), (Hi) or (iv) holds. 

2. Kelley's multiplicity function of A, A - arbitrary 

K e 11 e y [5] defined a multiplicity function (j) on the maximal ideal space 
M of the abelian von Neumann algebra A with values in cardinal numbers. In 
this section, we shall interpret the terminology and results of K e 11 e y [5] in 
terms of those of H a l m o s [3] and then describe 0 in terms of the projections 

If P is the carrier of a vector x £ H with respect to A (in the sense of 
< e l l e y [5]), evidently P = C[Ax] = Cr7(PG(»)' ^ e * a s t e ( I u a ^ t y being due to 
[3; Theorem 66.2] of H a 1 m o s . 

In [5], K e 11 e y defined a non empty set J of vectors in H as an A -base for 
a projection P £ A if 

(i) for each x £ J, 0 / ||x|| < 1 and C[Ax] = P , 
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(ii) for x,y G J , x ^ y, x _L [Ay], 
(iii) J is maximal with respect to (i) and (ii). 

Then by [1; Corollary 2 of Proposition 1.1.7] it follows that a projection P E A 
has an 4-base J if and only if P is cyclic in A and in that case, card J = 
H-multiplicity of P. Consequently, if a projection P E A has an ,4-base, then 
all the A -bases of P have the same cardinal number, which coincides with the 
H-multiplicity of P. 

A projection P G A is said be primitive in the sense of K e 11 ey [5] if there 
exists an *4-base J for P such that [Ax : x G J] = PH. An .4-base J for 
a projection P G A is said to be proper if pG{x) = pG{y) for x,y G J , with 
respect to the canonical spectral measure G{-). Then using the results of [3] one 
can show that every non zero cyclic projection P G A has a proper A -base and 
all the proper A -bases of P have the same cardinal number, which coincides 
with its H-multiplicity. Finally, it follows that a non zero projection P G A is 
primitive if and only if P is cyclic and has UH-multiplicity. Consequently, every 
non zero subprojection Q (G A) of a primitive projection in A is also primitive. 

NOTATION 4. Given / G C{M), T^ denotes the operator A G A whose image 
under the Gelfand map is / . For a projection F e A we denote by eF the clopen 
set in M for which T =F. Then G{eF) = F. 

x ғ 

DEFINITION 8. For each p G e F , F being a primitive projection in A, let 
<i>x{p) be the cardinal of a proper ,4-base of F. Then <fi1 is well defined on a 
dense open subset of M (see the proof of Theorem 1 below) and as shown in 
[5], it has a unique continuous extension (j> to the whole of M. We refer to </> 
as Kelley 's multiplicity function of A. 

TEIEOREM 1. Let A be an abelian von Neumann algebra on H with the 
maximal ideal space M, and let (j) be Kelley's multiplicity function of A. Let 
£fj = U eQn

 and let VKO ~ n tf t € eQn > n £ MA. Then i\) is continuous 
n£MA 

on VQ and (p is the unique continuous extension of ip. 

P r o o f . Since the CQ^ are mutually disjoint for n G MA, the function tp is 
well defined on the open set V0. Let t G V0 and let ip{t) = n0. Then t G e^ 

and xjj~l{n0) = e ,̂ is open in V0. Hence it follows that t/j is continuous on 

V0 when the set of cardinals c < dim H is given the order topology. 

Let V = \J{eF : F a primitive projection in A}. For n G MA, let x G Q n H , 
x / 0. If Q = [A'x], then Q G A and 0 ^ Q < Qn. Then by Corollary 1, Q 
has UH-multiplicity n and as Q is cyclic, Q is a primitive projection. Then by 
Zorn's lemma it follows that there exists a maximal orthogonal family Tn of 
primitive subprojections of Qn. We claim that Pn = ^ F = Qn. Otherwise, 

FGTn 
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there would exist a non zero vector x £ (Qn — Pn)H so that the projection 
Q = [A'x] £ A and 0 ^ Q < Qn. Then by Corollary 1, Q has UH-multiplicity 
n. Then, Q is a primitive subprojection of Qn orthogonal to Tn, contradicting 
the maximality of Tn. 

Since ]T Qn — I, it follows that V0 is dense in M. Again, since Qn = 
neMA 

^2 F for n £ MA, we have eQ = ( (J eF ) . Thus 

M = V0=( IJ ( U eF))cVcM 

and hence V is dense in M. Moreover, V C V0 by Corollary 1. If r G X>, 
then </>(£) = 0x(t) = the cardinal number of a proper ^4-base of a primitive 
projection F such that t G eF. Hence (f)1(t) is the same as the UH-multiplicity 
of F. If (p1(t) = n , then F < Qn by Corollary 1. Consequently, ip(t) = n . Thus, 
V^lp = 0i • Since the function 0 is a continuous extension of (j)l and since -0 is 
continuous on V0, it follows that 4> is also a continuous extension of tp to the 
whole of M. Since T>0 is dense in M, the continuous extension is unique. 

This completes the proof of the theorem. • 

3. The A-bsise s t ructure theo rem of Kelley 

Using the results of [7], [8] we first study some properties of the spectral 
representations of H relative to the canonical spectral measure G(-) of the 
abelian von Neumann algebra A and then, using Theorem 1, we deduce the 
A -base structure theorem of K e l l e y [5; Result 5.1]. 

THEOREM 2. For an abelian von Neumann algebra A on H with the canonical 
spectral measure G(-) the following assertions hold: 

(i) / / A is countably decomposable, then G(-) has generalized CGS-property 
in H. 

(ii) A' is countably decomposable if and only if G(-) has CGS-property in H. 
(iii) If A1 is countably decomposable, then H admits OSRs relative to G(-). 

If U is an OSR of H relative to G(-) with the measure sequence { l i .}^ , 
N G N U {oo} . then, for A £ A, 

N 

UAU-HUl = (9f Jl , Un)l
 S ®L2(M,B(M),fij) (1) 

1 

where g £ C(M) with Tg = A. 
(iv) If A' is countably (resp. if A is countably) decomposable, then every 

OTSR of H relative to G(-) is a COBOTSR (resp. BOTSR). If U is 
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a COBOTSR (resp. BOTSR) of H relative to (?(•) with the measure 

family (v<a)aeJ> then> for A€-A, 

UAU (fa,i)aeJ,ieia
 = \9fQ,i)aeJ,ieia ' 

(/«..)«€•/..€/- Z@@L2{M,B{M),na) (2) 
aeJ Ua 

where g G C(M) with Tg = A, card/ Q = ua and uG(iia) = ua > 0 for 
a e J. 

(v) If A is arbitrary, then (iv) holds with the change that U is just an OTSR 
of H relative to G(-). 

P r o o f . Since A is the von Neumann algebra generated by the range of 
G(-), (i) and (ii) are evident. 

(iii) By (ii), G(-) has CGS-property in H and by [7; Theorem 4.2(i)], H 
admits OSRs relative to G(-). Let U be an OSR of H relative to G(-) with 
the measure sequence { ^ j f , N G N U {oo}. Then UG(-)U~l = G(-), where 

Gi-Kfj)? = {X^fj)", (fj)? eK = ^L2(M,B(M)^j). Let g G C(M). If 

en = {t G M : \g(t)\ < n} for n G N, then by [7; Lemma 4.7] the operator 
T(g) defined by 

T(g)f = limfgdGf, feK, 

en 

is a bounded normal operator on K, with resolution of the identity G given 

by Gg(e) = G(g~l(e)) for e G /3(C). Thus 

T(g)f = \imfgdGf= f gdGf = u( f g dG\u~lf = UTgU~lf (3) 

en M M 

for g G C(M) and f = (fj)" G K. Now the last part of (iii) follows from (3) 
and from [7; Lemma 4.7(iii)]. 

(iv) This is immediate from [8; Theorem 5.6], since [7; Lemma 4.7] is quite 
general so that relations analogous to (1) and (3) hold in these cases too and 
thus (2) is true. 

(v) The proof is similar to that of (iv) except that we have to appeal to [8; 
Theorem 3.6] instead of [8; Theorem 5.6]. 

This completes the proof of the theorem. • 

In view of Theorem 1, the following theorem is the same as the result [5; 5.1] 
of K e l l e y (i.e., the ,4-base structure theorem of Kelley). In [5], the result 5.1 
is proved for a particular case only and the proof of the general case is left to 
the reader. 

573 



T . V. PANCHAPAGESAN 

T H E O R E M 3 ( . 4 - B A S E S T R U C T U R E T H E O R E M O F K E L L E Y ) . ([5]) There 

exists a maximal orthogonal family T of primitive projections in the abelian 
von Neumann algebra A on H. For F G T, let JF be a proper A-base 
for F. Let L2(M,B(M),pG(x)) = L2(pG(x)). Choose xF G JF, F G T. 
Let card JF = nF. Then there exists an isomorphism U from H onto K = 
0 0 L 2 ( p G ( x F ) ) such that 

F£T nF 

for A e A, where g G C(M) with Tg = A. 

P r o o f . For n G MA, let Tn be a maximal orthogonal family of primitive 
non zero subprojections of Qn (see the proof of Theorem 1). Let T = (J Tn. 

_ neMA 

Then T is a maximal orthogonal family of primitive projections in A since 
EF= £ £ = £ Qn = i-
T n£MA FeTn n£MA 

Let F G T. Then, as observed above (before Definition 8), F is cyclic in A 
with UH-multiplicity and the cardinality nF of the proper .A-base JF for F is 
its UH-multiplicity. By the definition of .A-base, F = CrAx, = CG(pG(xF)), the 
last equality being due to [3; Theorem 66.2] o f H a l m o s . I f . v G Y,(B(M)) with 
0 ^ v <C pG(xF), then by [3; Theorem 65.3] of H a l m o s there exists a vector 
y G [.A-cF] such that pG(y) — v and hence CG(v) ^ 0. Since 0 ^ CG(v) < F , 
by Corollary 1 the projection CG(v) has UH-multiplicity nF. Thus pG(xF) has 
uniform multiplicity V>G(PG(XF)) ~ nF > ® relative to G(-). 

Since ^ CG(pG(xF)) =^F = I and {pG(xF)}F T is an orthogonal farn-
F£T T 

ily in E(B(M)) with u(pG(xF)) > 0 being uniform, by [8; Theorem 3.5] there 
exists an OTSR of H relative to G(-) with the measure family {PQ(XF)}F^T-

NOWT the result follows from Theorem 2(v). 
This completes the proof of the theorem. • 
Now we shall give some characterizations of spatial isomorphisms of abelian 

\on Neumann algebras involving the equivalence of certain spectral representa­
tions. 

THEOREM 4. Let A{ be an abelian von Neumann algebra on Hi for ' = 1,2. 
and let $ be an isomorphism from Al onto A2. If G1(-) is the canonical spectral 
measure of Ax and F2(-) = $ o G1(-), then the following hold: 

(i) / / A[ and A2 are countably decomposable, then $ is spatial /f and only 
if any two OSRs (resp. any two COBOTSRs) of Hx and H0 relative to 
Gl(') and F2(-), respectively, are equivalent. 

(ii) If Ax and A2 are countably decomposable, then $ is spatial if and only if 
any two BOTSRs of Hx and H2 relative to G1(-) and F2(-), resjectiv ly, 
are equivalent. 
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(iii) <_> is spatial if and only if any two OTSRs of Hx and H2 relative to 
Gx(-) and F2(-), respectively, are equivalent. 

P r o o f . Since Ax and A2 are the norm closures of the linear subspaces gen­
erated by the ranges of Gx(-) and F2(-), respectively, it follows that <_> is spatial 
if and only if the spectral measures G1(-) and F2(-) are unitarily equivalent. 

(i) follows from Theorem 2(ii) above and from [7; Theorem 4.2 (iv)] (resp. 
and from [8; Theorem 5.8]). 

(ii) holds by Theorem 2(i) above and by [8; Theorem 5.8]. 
(iii) is due to [8; Theorem 4.6]. 
This completes the proof of the theorem. • 

4. Kelley's multiplicity function of A 
with A! countably decomposable 

Suppose the abelian von Neumann algebra A on H has its commutant A' 
countably decomposable. Then by Theorem 2 (ii) the canonical spectral measure 
G(-) of A has CGS-property in H. Consequently, as in Definition 4, we can 
associate with G(-) the multiplicity functions m_ and m_ denned on M. Now 

p c 

we shall study the relation between Kelley's multiplicity function 0 of A and 
the multiplicity functions m_ and mr. 
LEMMA 1. Let A' be countably decomposable with the OSD-multiplicity of G(-) 

oo 

H0 and let the discrete part pG be void. If H = 0 ZG(xi) is an OSD of H rel-
i 

ative to G(-), let e- — e^ t . \ ( = er A. i ) , the clopen set in M correspond-
1 CG{pG(Xi)) [^Xi\'> 

oo 

ing to the projection CG(pG(xi)) . Let e0 = f] ei. Then the following assertions 
i=l 

hold: 
(i) e0 is non void and closed. 

(ii) 7/ MA H N = {n • } - . then for t G enj\ens+l, mc(t) = n . ; if MA n N = 
{rij}^ , then for t G en\fin.+i, mc(t) = nj , j = 1, 2 , . . . , k - 1, and for 

t G er i fc\enfc+1, mc(t) = nk; and if MA n N = 0. then e0 = M and 

mc(t) = K0 for t G M. Finally, t G e0 if and only if mc(t) — tt0. 
(iii) Kelley's multiplicity function § of A coincides with the multiplicity func­

tion mc on M and consequently, mc is continuous on M • 

(iv) r0 = {f: d>(t) = K0} = {t: mc(t) = N 0 } . 

(v) K0 G MA if and only if inte0 ± 0 (equivalent^, K0 £ MA if and only 
if e0 is nowhere dense in M). If #0 e MA, then G(e0) = Q*0 • If 
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MA H N is non void and finite (resp. if MA flN = 0) . then tt0 E MA 

and e0 = CQ^ (resp. e0 = e ^ = M) so that e0 is clopen. 

(vi) MA coincides with the range of (j) ( = mc) if and only if int e0 ^ 0. 

P r o o f . Let M ^ D N = {nx < n2 < . . . } = {n^ f , where k E N U {oc}. 
Then by Proposition 3 we have: If k = co, then 

PG(Xnj)^PG(Xi)^PG(Xnj + 1 ) for nj < * < nj + l > J = 0 , 1 , 2 , . . . , 

with n0 = 0 and pG(x0) omitted; and if k is finite, then 

PG^n^PG^i^PG^nj^) for n j < i < nj + l > 0 < j < A, - 1 . 

with n0 = 0 and PG(%0) omitted and 

PG(Xnk) » PCK f c + l) = P G K f c + 2 ) = • ' • • 

Then by [3; Theorem 65.2] of H a l m o s , {ej^° is a non increasing sequence 
of clopen sets in M and these clopen sets satisfy the following relations: If 
k = oo and n0 = 0, then 

e£ = en. for nj_1<i<n-, jeN. 

If k is finite and nQ = 0, then 

e, = e„ for n-,<£<n-, 1 < j < k 
t nj j - i — j ' _ J _ 

and 
e ^ = enfc+i f o r '>%• 

Moreover, by Proposition 3(i), 

CG{pG(x1))=I and C G ( p G ( x i ) ) = / - £ O n (4) 

for j > 1. 
Hence, if k = oo, then 

e = e„ \en for j G N (5) 
Q n j n j \ n j + i -> V t 

and if k is finite, then 

eQnj = e n , \ e n i + 1 for 1 < j < k - 1 and e Q ^ = enfc\enfc + 1 . 6) 

Claim 1. For a non void open set U in ;Vf, G(L7) ^ 0. 

In fact, U is clopen and U\U is nowhere dense in M. Hence G(U\U) = 0 
and therefore, G(U) = G(U) = Fx_ / 0 (see Notation 4). 
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(i) Since {e -}J° is a non increasing sequence of non void closed sets in the 
compact space M, it follows that e0 is a non void closed set. 

(ii) Let t e e \e for j e N if k = oo and for j = 1,2, . . . , k- 1 if k G N. 

Then for 1 < i < n, and for an open neighborhood U of t, by [3; Theorem 66.2] 

we have CZG{G{U)Xi) = CG{U)ZG{X{) = G(U)CZa{Xi) = G(U)CG(pG(x{)) = 

G(U)G(ei) = G(U n e.) ^ 0 by Claim l a s [ / n e- is an open neighborhood of 

t. Consequently, G(U)x{ + 0. Let k = oo. As t G e n . \ e n . + i , U0 = e n . \ e n . + i is 

a clopen neighborhood of c, and as U0 f l e n . = 0, we have CZG{G{Uo)Xn +i) = 

CGiu0)zG{Xnj+l) = G(U0)CG(pG(xnj+l)) = G(U0)G(enj+i) = G ( U 0 n e n J ) = 0 

so that G(U0)xn.+l = 0. Thus mc(t) = n̂ . if t G e \ e (see Definition 4). 

When k G N, one can similarly show that mc(t) = nfc for t G enfc\enfc+1 and 
mc(t) = n- if £ G e n . \ e n j + i , 1 < j < k - 1. 

Suppose t e e0. Then £ G e • for each z G N and consequently, as in the above, 
G(U)x{ y£ 0 for each open neighborhood U of t and for each i G N. Hence, by 
Definition 4, mc(t) = K0 for t G e0 . Conversely, suppose rac(£) = N0 for some 
t e M. Then for each open neighborhood U of £, G(U)x{ ^ 0 for each i G N. 
Then, clearly, G(C/)ZG(x i) / 0 so that 0 ^ CG(c / )ZG(cCi ) = G(U)CG(/9G(x.)) = 
G(U)G(e{) = G(U n e-) and hence U n ê  ^ 0 for each open neighborhood U 
of i and for each i G N. Thus t G ê  = e • for each z G N. Therefore, £ G e0 . 

If J l /^nN = 0, then by Proposition 3(iii) we have MA = {N0} and pG(xx) = 
pG{x2) = . . . . Consequently, C(pG(x-)) = Q# = / for all j G N. Thus 
e0 = M • 

(iii) If k = oo, then by (5) we have eQ = e n . \ e n . x for j G N and 

consequently, by Theorem 1, (j)(t) = n- for t G e \ e , for j G N. Thus, 
j n,j \ ?ij-fi 

by (ii), <£(£) = mc(t) for l; G M\e0. If k is finite, then e0 = enfc + 1 and 
k-i k 

M\e0 = IJ (e n . \e n . + 1 ) U ( e n > n f c + 1 ) and thus by (6), M\e0 = \JeQn . Then 
j = i i J 

by (ii) and Theorem 1 it follows that </>(t) = mc(t) for t G *M\e0 . 
Now let t G e0 . If Af^nN ^ 0 and k is finite, then as seen above, e0 = enfc+1 

and by Proposition 3(i), K0 G MA and enfc+1 = eQ^ . If MA n N = 0, then as 
seen above ê . = 7W for j G N so that e0 = M = eQ^ since Q^o = J . Then, 
in both cases, by Theorem 1, <j>(t) = tt0 and consequently, by (ii), mc(t) = K0 

= 0 ( L ) . If k = oo, note that by (i), e0 ^ 0 and hence such t exists in e0 . Now 
we consider the following two cases. 
Case 1. K0 e MA. 
Then QKo ^ 0 and by Proposition 3, eQ D CQH , and hence, by Theorem 1, 

<f>(t) = K0 for t G eQNQ. Let t G K V ^ J . Since M = (\J eQn U e Q ) y 
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there exists a net {ta} in ( IJ eQ ] U eg^ such that ta -> t. Since the 

function <p is continuous on M , we have <f>(t) = lim(f>(t ) . If (j)(t) = n G N, 
Q 

then clearly <j)(ta) = n eventually and moreover, n = n- for some j G N. 
This means that ta G eQ eventually and hence t G eQn . This is impossible 

oo 

since -M\e0 = IJ eQn . Thus the cardinals <j)(ta) converge to K0 and hence 

$(t) = K0. Then by (ii) we have <j>(t) = mc(t) for all t G e0 and consequently, 
<j) = mc on M. Since 0 is continuous on M, mc is also continuous on M. 

Case 2. K0 & MA. —^ 
Let t G e0 . In this case, M = ( IJ eQ j and hence there exists a net {ta} c 

oo 

IJ e 0 such that t -> /;. As in the previous case, we have <j>(t) = lim </>(£) 
j = i j 

and 0(t) ̂  n for any n G N. Thus 4>(t) = K0. The rest of the argument is as in 
Case 1 and hence (iii) holds in this case also. 

(iv) This is immediate from the second part of (ii) and from (iii). 
(v) If K0 G MA, then QHQ ^ 0 and by Proposition 3, eQ^ C e- for all 

j G N. Hence inte0 / 0. Conversely, let e = inte0 / 0. Then G(e) = G(e) ^ 0 
by Claim 1, and by (4) we have G(e) < G(e^ = CG(pG(xj)) =1- £ Q 
for j G N. Hence peMAnN,P<j 

G(e)<]\(l- £ O =/ -£«„ , -
j=l v p£MAnN,p<j' rij-GM^nN 

Since XI Q n = -f? -t follows that tt0 G M ^ and that G(e) < Qn . Moreover, 
neMA 

by Proposition 3 we have eQ^ C e - for j G N and hence e^ C e0 . Conse­

quently, eQ^ C e. Thus G(e) = Q^Q . As e0\e is nowhere dense, it follows that 

G(eQ) = QZ 
Now, let T = MA DN. Then by Proposition 3(vi), MA is of the form MA = 

{n^ U {tt0} with k G N when T ̂  0 and finite, and MA = {N0} when T = 0. 
Then by (4) we have enfc+1 = eQ^ , where n^ = 0 if T = 0. Thus e0 = eQ^ 
and hence e0 is clopen. 

(vi) By (ii) and (iii), M A H N = {0(t) : t e M\eQ} = {mc(t) : t G M\eQ} . 
By (v), K0 G M ^ if and only if inte0 =£ 0. Since by (iv), (p(t) = mc(t) = H0 for 
t G e0 , (vi) holds. 

This completes the proof of the lemma. • 

The proof of the following lemma is similar to that of Lemma 1 and is left to 
the reader. 
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LEMMA 2. With A' countably decomposable, suppose the OSD-multiplicity of 
n 

G(-) is finite and suppose H = 0 Z G ( x z ) is an °$D of H relative to G(-). 
1 

Let the discrete part pG = 0 and let e- = ecG(PG(*i)) for * - * - n' ^ e n ^e 

following assertions hold: 
(i) Kelley's multiplicity function (j) is the same as mc on M. 

(ii) MA is given by the range of (j) (= mc). 

LEMMA 3. Let Q be a non zero projection in A. Then the maximal ideal space 
MQ of AQ is homeomorphic to eQ, the clopen set in M corresponding to Q. 
Consequently, if MQ and eQ are identified and if GQ is the canonical spectral 
measure of AQ, then GQ(a) = G(a)Q for a G B(eQ). 

P r o o f . Let # : C(M) -> A and * Q : C(MQ) -> AQ be the inverses of 

the Gelfand isomorphisms so that * ( / ) = Tf and *Q(g) = Tg for / G C(M) 

and g G C(MQ). For h G C(e ) , let us define: h(t) = h(t) if t G eQ and 

h(t) = 0 if t e M\e . Then, as eQ is clopen in M, h G C(M) and 

h = h\e . Let 4>(h) = ^(h). Then 4>(h) = ^(h)Q and clearly, # is an in­

volution preserving algebraic isomorphism from C(e ) into AQ. Given A G A, 

let / G C(M) such that * ( / ) = A. Let h = (fXe ) \ e • Then h G C(eQ) 

and ty(h) = * ( / ) Q = AQ. Thus the isomorphism * : C(eQ) -> AQ is onto. 

Moreover, | |*(/i) | | = | |*(A)Q|| = sup \h(t)\ = sup \h(t)\ for h G C(eQ) and 
teM t£eQ

 V 

hence ^ is an isometric isomorphism of C(eQ) onto AQ. Consequently, F = 

fy~l o vj) : C(jVig) —> C(eQ) is an onto isometric isomorphism and hence, by [2; 

Theorem IV.6.26] there exists a bijective bicontinuous mapping $ : eQ —> MQ 

such that (Ff)(t) = / ($(*) ) for / G C(yWg) and t G e Q . Thus, for e clopen in 

MQ, WC have (Fx e )M = Xe{$(t)) f o r £ G e Q . In other words, F\e = X 

for e clopen in A4g. For cr G Z?(./Vig), let T(cr) be the clopen set associated 

with a for which T(cr)Acr is meagre. Then evidently, Y(3>_1(O-)) = <J>-1(Y(O-)) 

as $ is a homeomorphism. Consequently, for a G B(MQ) we have GQ(a) = 

*O(XT(.)) = ^ ^ ' ( ^ - M ) = *(X*-I(T(„))) = G^-^T^JQ = 
G(T($-V)))Q = o($-V))Q. 

This completes the proof of the lemma. • 

THEOREM 5. Suppose the abelian von Neumann algebra A on H has its corn-
mutant countably decomposable. Let G(-) be the canonical spectral measure of A 
defined on B(M), M being the maximal ideal space of A. If (j) is Kelley's mul-
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tiplicity function of A and m and mc are the multiplicity functions associated 
with G(-) as in Definition 4, then the following assertions hold: 

(i) For t e pG , {t} is clopen in M. Consequently, pG is open in M . 

(ii) Forte M\pG, mp(t) = 0; forte pG, mc(t) = 0. 

(iii) mp(t) = (j)(t) e MA for tepG; mc(t) = 0(i) for teM\pQ. Thus 

<t>{t) = max(m p ( t ) ,m c ( t ) ) , teM\(pG\pQ). 

(iv) The following statements are equivalent: 
(a) (j) = max(m p ,m c ) . 
(b) p is closed. 
(c) max(m p ,m c ) is continuous. 

(v) The following assertions hold: 

(a) MAnN={cf)(t): teM}nN. 
(b) ^o £ Mj± if and only if e = (/>_1(N0) has non void interior. 
(c) When the range of (j) is a finite set, N0 e MA if and only if 

0_1(KO) is a non void open set. 

P r o o f . 
(i) Let t e pG and let T({t}) be the clopen set in M corresponding to {t} 

so that {t}AT({t}) is meagre in M. Then G(T({£})\{/}) = 0 . As T({*})\{*} 
is open, by Claim 1 in the proof of Lemma 1 we conclude that T({t}) = {t} 
and hence (i) holds. 

(ii) By the definition of pQ , m (t) = 0 for t e M \ p . Now let t ep . 
By (i), pG is clopen and moreover, pG \pG is nowhere dense in M. Thus 
G(pG) = G(pG) so that G(cG) = G(M \pG) = G(M \pG). Since pG is 
clopen, U = pG is an open neighborhood of t such that U D (M \PQ) = 0-
Then G(U)G(cG) = 0 and hence mc(t) = 0 by Definition 4. 

(iii) Let t e pG. Suppose mp(t) = n e N (resp. m (t) = K0). Then 
there exists an orthonormal basis {xk}™ (resp. {^/J^) in G({t})H. Then, 
as G(a)xk = 0 if t ^ a and G(a)xk = xk if t e a, it follows that ZG(xk) = [xk] 

n oo 
and hence G({t})H = @ZG(xk) (resp. = ($ZG(xk)). Moreover, pG(xk) = St 

l i 
where 5t denotes the Dirac measure at {t} on B(M) and hence pG(xl) = 

PG(X2)-- = PG(XJ ( resP- PG(XI) = PG(X2) = • • • ) • T h u s G({f))H = 
n oo 

® Z G ( x - ) (resp. = 0 Z G ( x . ) ) i s a n O S D o f G({t})H. Then, as CG(/^G(^i)) = 
i l 

G({t}) , we have CZc{Xk) = CG(pG(xk)) = G({t}) for k = 1, 2 , . . . ,n (resp. 

for fc = 1 ,2 , . . . ) . Moreover, by [3; Theorem 60.2] of H a l m o s , {ZG(xk)}" 
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(resp. {ZG(xk)}™) is an orthogonal family of abelian projections in A!. Hence 
the projection G({t}) has UH-multiplicity n (resp. N0). Thus n (resp. N0) 
G MA and moreover, G({t}) < Qn (resp. < QHQ) by Corollary 1. Therefore, 
t G eQn (resp. G eQ^ ) and hence, by Theorem 1 we have (j)(t) = m (t). Since 
eG(cG) ~ M\pG (see the proof of (ii)), by Lemma 3 the maximal ideal space 
Ml of AG(cG) can be identified with M\pG and by the last part of Lemma 3 
it follows that the discrete part PGG(CG) = 0. Consequently, by Lemmas 1 and 2 
we have mc(t) = (j)(t) for t G M \pG> Hence (iii) holds. 

(iv) From the definition of <j) it is clear that (j)(t) ^ 0 for any t G M. More­
over, (ii) implies that max(rap(£),rac(£)) = 0 for t G PG\pG- These observations 
show that (a) => (b). If pG is closed, then by (iii) we have 0 = max(rap, rac) 
on M and hence (b) ==> (a) & (c). Finally, since M\(pG\ pG) is dense in 
M and 0 is continuous on M, (c) => (a) by (iii). 

(v)(a) First let us observe that MA = {n e MA : QnG(pG) ^ 0}u{n G MA : 
QnG(cc) * ° ) • T h u s MA n N = (MAG(po) n N) U (MAG{CG) n N) . As shown 
in the proof of (iii), {</>(£) : t G pG} n N = M^G(pc?) n N. By Lemmas 1, 2 
and 3 it follows that {</>(*) : t G M \pG} n N = M ^ G ( C G ) n N. Thus we have 
{0(t) : t G M \ (PG\pG)} fl N = M ^ n N. Now let t G p G \ p G . Then there 
exists a net {ta} in p G such that ta -> £ and consequently, by the continuity 
of 0, 4>{t) = lim0(* ) . If </>(t) = n G N, then <KU = n e v e n t u a l l Y a n d 

hence £Q G eQn eventually. Thus n G {(/)(u) : u G pG} n N C MA n N. The 
other possibility is (j)(t) = N0 and in that case, clearly (j)(t) £ MA n N. Thus 
M ^ n N = {(f)(t) : t G A ^ } n N . 

(v)(b) Now let K0 e MA. Then the clopen set eQHQ is non void and by 
Theorem 1 we have (j)(t) = H0 for all t G eQH . Thus eQiiQ C e and hence e 
has non void interior. Conversely, suppose e has non void interior U. Since <f> is 
continuous, e is closed and hence U C e. Let Q = G(U) = <?({/). Then the non 
zero projection Q belongs to A and the clopen set eQ = U C e. Hence </>(£) = N0 

for all £ G eQ. If Q Q n 7̂  0 for some n G N, then for £ G eQQn = eQ n eQri we 
have 0(t) = n by Theorem 1. This contradiction shows that N0 G M ^ and 
<2 < QK0 • ( N o t e t h a t Q = Qx0, since by Theorem 1, </>(£) = N0 for £ G eQ^ .) 

(v)(c) Let us now suppose that the range of 0 is a finite set. If N0 G MA, then 
QHo = I- ^2 Qn. By hypothesis and by (v)(a) we can assume M ^ n N = {n^ 

n£M AnN 
k 

(resp. = 0 ) . Then M = [j eQn U eQ^ (resp. = eQitQ) so that, by Theorem 1, 

</>_1(N0) = eQi< is clopen and non void in M. Conversely, if 0_1(HO) is a non 

void open set, then K0 G MA by (v)(b). 
This completes the proof of the theorem. • 
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