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AN ABELIAN VON NEUMANN ALGEBRA

T. V. PANCHAPAGESAN

(Communicated by Anatolij Dvureéenskij )

ABSTRACT. Let A be an abelian von Neumann algebra of operators on a
Hilbert space H and let G(-) be its canonical spectral measure (see Definition
5) on the Borel subsets of its maximal ideal space M. By describing Kelley’s
multiplicity function ¢ of A in terms of the uniform multiplicity function of
Halmos, the basic structure theorem of Kelley [KELLEY, J. L.: Commutative
operator algebras, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 598-605] is deduced
from the theory of orthogonal spectral representations applied to G(-). When the
commutant A’ is countably decomposable, G(-) has CGS-property in H and in
this case, ¢ is also described in terms of the multiplicity functions m_ and m,

P
of G(-) (see Definition 4).

Let A be an abelian von Neumann algebra of operators on a Hilbert space
H with A’ its commutant, M its maximal ideal space and G(-) its canonical
spectral measure (see Definition 5). Kelley [5] defined a multiplicity function
¢ on M and result 5.1 of [5] (namely, the basic structure theorem) determines
H and A, up to unitary equivalence, in terms of ¢.

In a series of papers [6], [7], [8], [9], [10], we gave a unified approach to
deduce or generalize all the important results known on the problem of unitary
invariance. (See [10; Introduction].) The present paper forms the last part of the
scries and deduces Kelley’s basic structure theorem from the theory of orthogonal
spectral representations developed in [8]. For this, we describe ¢ in terms of the
uniform multiplicity function of Halmos [3].

When A’ is countably decomposable, G(-) has CGS-property in H and hence
has two multiplicity functions m,, and m_ on M corresponding to the discrete
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T. V. PANCHAPAGESAN

part p, and the continuous part cg; (see Definition 4). In Theorem 5 we describe
¢ in terms of m,, and m,. Consequently, a spatial isomorphism theorem in terms
of m  and m, holds for A. Assuming Theorem 5, this isomorphism result has
becn obtained in [10; Corollary 2].

1. Preliminaries

In this section we fix notation and terminology and give some definitions and
results from the literature to make the paper self-contained.

Let H, H, and H, denote (complex) Hilbert spaces of arbitrary dimension
(> 0). The closed subspace spanned by a subset X of a Hilbert space is denoted
by [X]. € M, is the orthogonal direct sum of a family of mutually orthogonal
closed subspaces M, of a given Hilbert space or of Hilbert spaces {M,},.

If P is a projection in a von Neumann algebra R on H, then Cp denotes the
central support of P. For z € H, [Rz] = [Rz : R € R] and, sometimes, it also
denotes the orthogonal projection with range [Rz]. By an isomorphism between
two von Neumann algebras we mean a x-isomorphism. ) & A, denotes the
direct sum of the von Neumann algebras A;. The rest of the terminology and
notation in von Nuemann algebras is standard and we follow Dixmier [1].

Let S be a o-algebra of subsets of a non empty set Q. Let E(-) be a spectral
measure on S with values in projections of H. For x € H, p;(z) denotes the
measure ||E(-)z||? on S. Let £(S) be the set of all finite (positive) measures
on §. For py,p, € B(S), we write py = p, if p; < py and p, < g, . Clearly,
= is an equivalence relation on X(S).

For p € 3(8), the projection Cp(p) is defined as the orthogonal projection
on the closed subspace {z € H : pg(z) < p} and it follows from [3] that
Cp(p) € W, where W is the von Neumann algebra generated by the range of
E(-). The multiplicity up(p) of p € L(S) relative to E(-) is defined by

up(p) = min{ H-multiplicity of Cr(v): 0# v < p, v € X(S)}

if p# 0 and uj(0) =0, where the H-multiplicity of C,(v) is the multiplicity
of Cp;(v) relative to E(-) in the sense of Halmos [3]. x € ¥(S) 15 said to have
uniform multiplicity ug(p) relative to E(:) if up(v) = ug(p) for 0 # v < p
veL(S).

For z € H, let Z,(z) = [E‘(o):c 10 €S8].

Now we quote some definitions and results from (7], [8].

DEFINITION 1. A spectral measure E(-) on § is said to have CGS-property
in H if there exists a countable set X' in H such that [E(o)z: z € X, 0 € S|
=H.

566



ON KELLEY'S MULTIPLICITY FUNCTION OF AN ABELIAN VON NEUMANN ALGEBRA

DEFINITION 2. Let E(-) be aspectral measure on § with values in projections
of the Hilbert space H. Then H is said to have an ordered spectral decomposition
(bricfly, OSD) relative to E(-) if

N
H=@Zy(z;), NeNU{w},
1

where the x; arc non zero vectors in H and

pp(x) > pplzy) > ...

N is called the OSD-multiplicity of E(-). (N is uniquely determined by E(-)
by [7; Theorem 3.11].) When N = oo, we say that the OSD-multiplicity of E(-)
is N.

By [7; Theorem 3.7], H has an OSD relative to E(-) if and only if E(-) has
CGS-property in H.
NOTATION 1. Let p; € X(S), p; #0, j € J, and let H=® L,(u;), where
JjeJ
Ly(n,) = Ly(2, 8, 1 ). In the sequel, by E(-) we shall denote the set function
on S given by ) )
E(')(fj);e.] = (X(.)fj)ja (fj)j €H.

DEFINITION 3. Let {g_ }V, N € NU {co}, be non zero measures in X(S)
N

with g, > p, > .... An isomorphism U from H onto K = @ L,(p,) is
1

called an ordered spectral representation (briefly, OSR) of H relative to E(-),
if UE()U™! = E(-). N is called the OSR-multiplicity of E(-) (since N is
uniquely determined by E(-) by [7; Theorem 4.2] and it coincides with its
OSD-multiplicity).

The scquence {,un}{v is called the measure sequence of the OSR U. Two
OSRs U, and U, of H, and H, relative to the spectral measures E,(-) and
E,(-) defined on the o-algebra S with the corresponding measure sequences
{/1‘,1)}1\11 and {/42)};\/:21 arc said to be equivalent if N, = N, and /L;l) = /i§2)
for all 5.

DEFINITION 4. Let X be a Hausdorff topological space, & = B(X), the
o-lgebra of all Borel subscts of X (i.e., the o-algebra generated by the open
setsin '), and E(-) a spectral measure on S with CGS-property in H. Then
the discrete part py of E(-) is defined as the set {t € X : E({t}) # 0}.
The continuous part cp of E(-) is defined as the set X'\ p,. We shall write
M(E) = E(p,)H and R(E) = E(cgp)H = Ho M(E).
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The multiplicity function m,, on X relative to E(-) is defined as mp(t) =0 if

t€ X\pg and m(t) = dim E({t})H if ¢t € p;, where m_(t) = X, if E({t})H
is infinite dimensional.

N
Let R(E) = @ Z(y;) be an OSD of R(E) relative to F(:) = E(-)E(cg)-

1
Then the multiplicity function m, on X relative to E(-) is defined as follows:
(i) m.(t) =0 if R(E) = {0} orif R(FE) # {0} and there exists an open set

U containing t for which E(U)y, = 0.

(ii) m,(t) = n € N if y, do exist for all £ =1,2,...,n and for every open
set U containing ¢t we have E(U)y, # 0 for k =1,2,...,n, while N =n
or y, ., does exist and E(U)y, , = 0 for some open set U containing ¢.

(iii) m,(t) = R, if N = oo and for every open set U containing ¢ we have
EU)y, #0 for each k € N.

NOTATION 2. Let W be the von Neumann algcbra generated by the range of
a spectral measure E(-) on S with values in projections of H and let 17 =

> €€BJ W'Q,, be the type I -direct sum decomposition of W'. Then by {Q,.},.c;

we denote the collection of these projections in the above decomposition and
{n: n € J} is denoted by M, as well as by M. M, (resp. M) is called the
multiplicity set of W (resp. of E(:)). The multiplicity and uniform multiplicity
of projections in W in the sense of Halmos [3; pp. 100-101] will be referred
to as H-multiplicity and UH-multiplicity, respectively.

DEFINITION 5. Let A be an abelian von Neumann algebra on H and let M
be its maximal ideal space. If B(M) is the o-algebra of the Borel sets in M,
then the unique spectral measure G(-) on B(M) which associates (under the
inverse of the Gelfand mapping) with each o € B(M), the projection operator
corresponding to the characteristic function of the clopen set Y(o) for which
Y(o)Ao is meagre in M, is called the canonical spectral measure of A (sec
[4; pp. 157-163]). If A, is an abelian von Neumann algebra on H,, then its
maximal ideal space and canonical spectral mecasure are denoted by M, and
G.(-), respectively, for i = 1,2.

NOTATION 3. If A is an abelian von Neumann algebra on H and if G(-) is
its canonical spectral measure, then the H-multiplicity and UH-multiplicity of a
projection P in A are with respect to G(-) (since A is the von Neumann algebra
generated by the range of G(-)). The multiplicity set A7, is as in Notation 2
but with W replaced by A and E(-) by G(-).

Let E(-) and W be as in Notation 2. As observed in [6], a projection P’
in 1V’ is abelian if and only if it is a row projection with respect to E(-) (in
the sense of Halmos [3]) and the column generated by a projection in 11/ is
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the same as its central support. Thus [3; Theorem 66.4] of Halmos can be
reformulated as follows:

PROPOSITION 1. A non zero projection F in W has UH-multiplicity n rela-
twe to E(-) if and only if there exists an orthogonal family {E.}.c; of abelian
projections in W' such that cardJ = n, Cp = F for each a € J and
Y. E! = F; in other words, if and only if W'F is of type I, or, equivalently,
a€J

if and only if 0 # F < Q,, where the Q, are the central projections in the type

I -direct sum decomposition of W'.

COROLLARY 1. If A is an abelian von Neumann algebra with the canonical
spectral measure G(-), then a non zero projection P € A has UH-multiplicity
n (in the sense of Halmos [3]) with respect to G(-) if and only if n € M,
and P < Q,,, where the Q,, are the central projections of the type I -direct sum
decomposition of A’.

DEFINITION 6. Suppose E(-) is a spectral measure on § with values in pro-
jections of H. Let {u;},.; be an orthogonal family in X(S) with cach K,
having uniform multiplicity ug(u;) = u; > 0 for j € J. Let H= _EBJ@LQ(uj)
JEJ U
and suppose U: H — H is an isomorphism of H onto H. Then U is called
an orthogonal spectral representation (briefly, OTSR) of H relative to E(:) if
UE()U™' = E(-) (sec Notation 1). The set {,uj}jeJ is called the measure
family of the OTSR U. Suppose U, is an OTSR of the Hilbert space H, rel-
ative to the spectral measure E;(-) dcfined on & with the measure family F;
for i = 1,2. Then we say that U, and U, are equivalent and write U, ~ U, if
up (1) = up,(p) for p € FyUF, and the multiplicity functions uy, and uy, are
uniform on F} UF,. An OTSR U of H relative to E(-) with the measure family
F is called a bounded OTSR (briefly, BOTSR) if F, = {p € F : ug(p) = n}
is bounded in 3(S) for each n € My. A BOTSR U of H relative to E(-) with
the measure family F' is called a BOTSR with countable multiplicities (briefly,
COBOTSR) if ug(p) <R, for all p € F.

DEFINITION 7. Let E(:) and W be as in Notation 2. Then E(-) is said to
have generalized CGS-property in H if the central projections {Q } in the type
I, -direct sum decomposition of the commutant W' are countably decomposable
in W.

By [7; Theorem 5.6] we have the following result:

PROPOSITION 2. The spectral measure E(-) has CGS-property (resp. general-
ized CGS-property) in H if and only if H admits a COBOTSR (resp. a BOTSR)
relative to E(-); consequently, if and only if every OTSR of H relative to E(-)
1s a COBOTSR (resp. a BOTSR).
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In the sequel, A will denote an abelian von Neumann algebra on H | with its
maximal ideal space M and its canonical spectral measure G(-).

The following proposition is proved in [10]. It plays a key role in Section 4
below.

N
PROPOSITION 3. If H = @ Zy(z,), N € NU{oo}, is an OSD of H rela-
1

tive to a spectral measure E(-) on S with values in projections of H, then the
following assertions hold:

(i) Cplpp(x)) =1 and Cy(py(z;) =1- 5 Q@ ,1<j<N,jelN
neMgNN, n<j
(i) If M, ={n, <n, <...}U{X,}, then
(@) pglz,,) >¢> Pp(T;) = pE($71i+1) forn;<j<ng,,i=0.12...,
where ny = 0 and the term corresponding to x,, s omitted.
(b) pp(z;) >§ Ko, j € N, where CE('UQNO) = Qy, -
(i) If My = {n, < n, < -+ < n}U{Ry}, then (ii)(a) holds for i =
0,1,2,...,k—1 and
(c) pE(xj) = o, for 3 >mn;, j €N, where LLQNU is as in (ii)(b).
(4]
Here k = 0 is also permissible (in the sense that My NN = ().
Then, in that case, My = {X,} and (c) holds for all j € N.
(iv) If M = {n; < n, < ...}, then (ii)(a) holds and there does not exist
v € X(8) with Cy(v) # 0 such that pg(z;) >; v for all j € N.
(v) If M = {n; < n, < .-+ < n,}, then (ii)(a) holds for i = 0,1,2,...
k=1,
(vi) If N = oo, then one and only one of (ii), (iii) or (iv) holds.

2. Kelley’s multiplicity function of A, 4 — arbitrary

Kelley [5] defined a multiplicity function ¢ on the maximal ideal space
M of the abelian von Neumann algebra A with values in cardinal numbers. In
this section, we shall interpret the terminology and results of Kelley [5] in
terms of those of Halmos [3] and then describe ¢ in terms of the projections
{QTI}’I'LEA[A :

If P is the carrier of a vector £ € H with respect to A (in the sense of
{elley [5)), evidently P = C[Az] = CG(pG(a:))’ the last equality being due to
[3; Theorem 66.2] of Halmos.

In [5], Kelley defined a non empty set J of vectors in H as an .A-base for
a projection P € A if

(i) for each z € J, 0 # ||z|| <1 and C[Aa.] =P,
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(i) for z,y e J, z # vy, = L [Ay],

(iii) J is maximal with respect to (i) and (ii).

Then by [1; Corollary 2 of Proposition 1.1.7] it follows that a projection P € A
has an A-base J if and only if P is cyclic in A and in that case, cardJ =
H-multiplicity of P. Consequently, if a projection P € A has an A-base, then
all the A-bases of P have the same cardinal number, which coincides with the
H-multiplicity of P.

A projection P € A is said be primitive in the sense of Kelley [5] if there
exists an A-base J for P such that [Az : z € J] = PH. An A-basc J for
a projection P € A is said to be proper if pg(z) = pg(y) for z,y € J, with
respect to the canonical spectral measure G(-). Then using the results of [3] one
can show that every non zero cyclic projection P € A has a proper A-base and
all the proper A-bases of P have the same cardinal number, which coincides
with its H-multiplicity. Finally, it follows that a non zero projection P € A is
primitive if and only if P is cyclic and has UH-multiplicity. Consequently, every
non zero subprojection @ (€ A) of a primitive projection in A is also primitive.

NOTATION 4. Given f € C(M), T; denotes the operator A € A whose image
under the Gelfand map is f. For a projection F' € A we denote by e, the clopen
set in M for which Txep = F. Then G(ep) = F.

DEFINITION 8. For each p € ey, F' being a primitive projection in A, let
¢,(p) be the cardinal of a proper .A-base of F'. Then ¢, is well defined on a
dense open subset of M (see the proof of Theorem 1 below) and as shown in
[5], it has a unique continuous extension ¢ to the whole of M. We refer to ¢
as Kelley’s multiplicity function of A.

THEOREM 1. Let A be an abelian von Neumann algebra on H with the
mazimal ideal space M, and let ¢ be Kelley’s multiplicity function of A. Let

D, = GLIJI e, andlet Y(t) =n if t €ey , n € My. Then 1 is continuous
neMa
on D, and ¢ is the unique continuous extension of 1.

Proof. Since the eq, are mutually disjoint for n € M 4, the function ¢ is
well defined on the open set D, . Let t € D, and let ¥(t) = n,. Then t € €Qn
and ¢¥~!(n,) = €Qng is open in D, . Hence it follows that ) is continuous on

D, when the set of cardinals ¢ < dimH is given the order topology.

Let D = J{ep : F a primitive projection in A}.Forn € M, ,let z € Q, H,
r£0.1f Q@ =[Az], then @ € A and 0 # Q < @Q,,. Then by Corollary 1, Q
has UH-multiplicity n and as @ is cyclic, Q is a primitive projection. Then by
Zorn’s lemma it follows that there exists a maximal orthogonal family F_ of

n

primitive subprojections of @,,- We claim that P, = 3 F =@, . Otherwise,
FeF,
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there would exist a non zero vector z € (Q, — P,)H so that the projection
Q =[A'z) € A and 0# Q <@Q,,. Then by Corollary 1, @ has UH-multiplicity
n. Then, @ is a primitive subprojection of @, orthogonal to F, , contradicting
the maximality of F, .

Since Y @, = I, it follows that D, is dense in M. Again, since Q, =
neM

>, F for n€ My, we have eg :( U eF).Thus
FEF, " FEF,

m=2=( Y (U ))cPcm

neM4 ‘FEF,
and hence D is dense in M. Moreover, D C D, by Corollary 1. If ¢t € D,
then ¢(t) = ¢,(t) = the cardinal number of a proper .A-base of a primitive
projection F such that t € e.. Hence ¢,(t) is the same as the UH-multiplicity
of F.If ¢,(t) = n, then F < @, by Corollary 1. Consequently, 1 (t) = n. Thus,
1/)|D = ¢, . Since the function ¢ is a continuous extension of ¢, and since ¥ is
continuous on Dy, it follows that ¢ is also a continuous extension of 9 to the
whole of M. Since D, is dense in M, the continuous extension is unique.
This completes the proof of the theorem. a

3. The A-base structure theorem of Kelley

Using the results of [7], [8] we first study some properties of the spectral
representations of H relative to the canonical spectral measure G(-) of the
abelian von Neumann algebra A and then, using Theorem 1, we deduce the
A-base structure theorem of Kelley [5; Result 5.1].

THEOREM 2. For an abelian von Neumann algebra A on H with the canonical
spectral measure G(-) the following assertions hold:

(i) If A is countably decomposable, then G(-) has generalized CGS-property
m H.
(ii) A’ is countably decomposable if and only if G(-) has CGS-property in H .
(iii) If A" is countably decomposable, then H admits OSRs relative to G(-).
If U is an OSR of H relative to G(-) with the measure sequence {uj N,
N e NU {0}, then, for A€ A,
N

UAUTY (Y = ()0 (f)Y € DLy (M, B(M), p)) (1)

1
where g € C(M) with T, = A.

(iv) If A" is countably (resp. if A is countably) decomposable, then every
OTSR of H relative to G(-) is a COBOTSR (resp. BOTSR). If U 1is
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a COBOTSR (resp. BOTSR) of H relative to G(-) with the measure
family (po)ocs» then, for A€ A,

UAU_I(fa,i)aGJ,iEI,, = (gfa.i)aEJ.iGIa )

(faiidaed,ier. € @ @Lz (M, B(M), p1,,) )
a€J uq
where g € C(M) with T, = A, card I, = u, and ug(pu,) =u, >0 for

a€clJ.
(v) If A is arbitrary, then (iv) holds with the change that U is just an OTSR
of H relative to G(-).

Proof. Since A is the von Neumann algebra generated by the range of
G(-), (i) and (ii) are evident.

(iii) By (ii), G(-) has CGS-property in H and by [7; Theorem 4.2(i)], H
admits OSRs relative to G(-). Let U be an OSR of H relative to G(-) with
the measure sequence {uj}f’, N € NU {o0}. Then UG(-)U~! = G(-), where

- N
G()(fj){v = (X(.)fj)ivv (f]){v €K = @Lz(MaB(M)auj)' Let g€ C(M). If
e, = {t € M: |g(t)] < n} for n € N, then by [7; Lemma 4.7] the operator

n

T(g) defined by
T(g9)f = lirxln/g dGf, fek,
€n

is a bounded normal operator on K, with resolution of the identity G g 8iven
by G,(e) = G(g7(e)) for e € B(C). Thus

T(9)f = lim/gd@f = /g dGf = U( /g dG)U‘lf =UT,U™'f (3)
€n M M

for g € C(M) and f = (f;)) € K. Now the last part of (iii) follows from (3)
and from [7; Lemma 4.7 (ii1)].

(iv) This is immediate from [8; Theorem 5.6], since [7; Lemma 4.7] is quite
general so that relations analogous to (1) and (3) hold in these cases too and
thus (2) is true.

(v) The proof is similar to that of (iv) except that we have to appeal to [8;
Theorem 3.6] instead of [8; Theorem 5.6].

This completes the proof of the theorem. O

In view of Theorem 1, the following theorem is the same as the result [5; 5.1]
of Kelley (i.e., the A-base structure theorem of Kelley). In [5], the result 5.1
is proved for a particular case only and the proof of the general case is left to
the reader.
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THEOREM 3 (AA-BASE STRUCTURE THEOREM OF KELLEY). ([5]) There
ezists a mazimal orthogonal family F of primitive projections in the abelian
von Neumann algebra A on H. For F € F, let J, be a proper A-base
for F. Let Ly(M,B(M),ps(z)) = Ly(ps(z)). Choose . € J., F € F.
Let card J, = np. Then there exists an isomorphism U from H onto K =

D DL,(pg(zp)) such that
FeF np
-1 _
UAU (fF,j)Fef.jEJp - (ng.j)Fef,jer’ (fFJ')Fef,jeJr €K
for A€ A, where g € C(M) with T, = A.

Proof. For n € M, let F, be a maximal orthogonal family of primitive

non zero subprojections of @, (sce the proof of Theorem 1). Let F = |J F,.
neMy
Then F is a maximal orthogonal family of primitive projections in A since

Zf:F= > 2 = 2 Q=1

neM o FeF, neMp

Let F € F. Then, as observed above (before Definition 8), F' is cyclic in A
with UH-multiplicity and the cardinality n,. of the proper A-base Jp for F is
its UH-multiplicity. By the definition of A-base, F = C 4,1 = Cg(pc(zr)) , the
last equality being due to [3; Theorem 66.2] of Halmos. If v € £(B(M)) with
0 # v < pg(z ), then by [3; Theorem 65.3] of Halmos there exists a vector
y € [Az ] such that pg(y) = v and hence C(v) # 0. Since 0 # Cy(v) < F,
by Corollary 1 the projection C,(v) has UH-multiplicity np. Thus pg(z ) has
uniform multiplicity ug(pg(@p)) = np > 0 relative to G(-).

Since Y. Cg(pg(zp)) =Y F =1 and {pG(xF)}Fe}. is an orthogonal fam-
FEF F

ily in £(B(M)) with u(pg(zp)) > 0 being uniform, by [8; Theorem 3.5] there
exists an OTSR of H relative to G(-) with the measure family {pq(7p)}per-
Now the result follows from Theorem 2(v).

This completes the proof of the theorem. O

Now we shall give some characterizations of spatial isomorphisms of abelian
von Neumann algebras involving the equivalence of certain spectral representa-
tions.

THEOREM 4. Let A, be an abelian von Neumann algebra on H; for "=1,2,
and let ® be an isomorphism from A, onto A, . If G,(-) is the canonical spectral
measure of A, and F,(-) = ® o G,(-), then the following hold:
(i) If A} and A, are countably decomposable, then ® is spatial if and only
if any two OSRs (resp. any two COBOTSRs) of H, and H, relatwe to
G, (-) and F,(-), respectively, are equivalent.
(ii) If A, and A, are countably decomposable, then ® is spatial if and only 1f
any two BOTSRs of H, and H, relative to G(-) and F,(-), resyectw ly,
are equivalent.
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(iii) @ is spatial if and only if any two OTSRs of H, and H, relative to
G,(-) and F,(-), respectively, are equivalent.

Proof. Since A, and A, are the norm closures of the linear subspaces gen-
crated by the ranges of G(-) and F,(-), respectively, it follows that & is spatial
if and only if the spectral measures G,(-) and F,(-) are unitarily equivalent.

(i) follows from Theorem 2(ii) above and from [7; Theorem 4.2(iv)] (resp.
and from [8; Theorem 5.8]).

(ii) holds by Theorem 2(i) above and by [8; Theorem 5.8).
(iil) is due to [8; Theorem 4.6].
This completes the proof of the theorem. O

4. Kelley’s multiplicity function of A
with A’ countably decomposable

Suppose the abelian von Neumann algebra .4 on H has its commutant A’
countably decomposable. Then by Theorem 2 (ii) the canonical spectral measure
G(-) of A has CGS-property in H. Consequently, as in Definition 4, we can
associate with G(-) the multiplicity functions m, and m, defined on M. Now
we shall study the relation between Kelley’s multiplicity function ¢ of A4 and

the multiplicity functions m, and m,.

LEMMA 1. Let A’ be countably decomposable with the OSD-multiplicity of G(-)
R, and let the discrete part p, be void. If H = @ Z,(x;) is an OSD of H rel-
1

atwe to G(*), let e; = © e (polz0) (= €[urz,)), the clopen set in M correspond-

o0
ing to the projection Cg(pg(x;)) . Let eg = () e,. Then the following assertions
=1
hold:
(i) e, is non void and closed.
(i) If M,yNN = {n;}$°, then for t € enj\enHl, m.(t) =n;; if MyNN=
{n;}}, then for t € e\, s M) =n;, j=1,2,...,k—1, and for
t € e, \e, 41, M (t) = ny; and if MyNN =0, then ¢, = M and
m,(t) =R, for t € M. Finally, t € e, if and only if m (t) =R, .

(iii) Kelley’s multiplicity function ¢ of A coincides with the multiplicity func-
tion m, on M and consequently, m, is continuous on M.

(iv) (’Oz{fl d)(t):NO}.—_{t mc(t):NO} |
(v) R, € M, if and only if inte, # O (equivalently, Ro ¢ M4 if and only
if e, is nowhere dense in M). If Ry € My, then G(ey) = Qo - If
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M, NN is non void and finite (resp. if My NN = (), then Ry € M,
and e, = €Qu, (resp. ey = €, = M) so that e, is clopen.
(vi) M, coincides with the range of ¢ (= m,) if and only if inte, # 0.

Proof. Let MyNN={n;, <n, <...} = {nj}’l", where k& € NU {oo}.
Then by Proposition 3 we have: If k = co, then

pG(:c”]_) >z> pe(z;) = pG(anl) for n;<i<n;,,, 7=012...,
with n, =0 and pg(,) omitted; and if k is finite, then
pG(xnj) >§ pe(z;) = pG(x"j+l) for n;<i<n;,, 0<j<k-1.
with n, =0 and pg(7,) omitted and
(@) Z P (Tnyi1) =P (Tneqa) = -

Then by [3; Theorem 65.2] of Halmos, {e;}$° is a non increasing sequence
of clopen sets in M and these clopen sets satisfy the following relations: If
k=00 and n, = 0, then

€ = ey, for nj_l<€§nj, j € N.
If k is finite and ny, = 0, then

e, =e for n; ,<€<n;, 1<j<k

n;
and

et 1 for I>n,.

Moreover, by Proposition 3 (i),

CG(pG(xl)) =1 and CG(PG(%‘)) =1I- Z Q, (4)

n<j,neEM NN

for j > 1.
Hence, if k = oo, then
eqQ,, = enj\enj+1 for jeN (5)
and if k is finite, then
€qQ,, = enj\e”j+1 for 1<j<k-1 and €Q., = € \Cp 11 6)

Claim 1. For a non void open set U in M, G(U) #0.

In fact, U is clopen and U\ U is nowhere dense in M. Hence G(U\U) =0
and therefore, G(U) = G(U) = T)\U # 0 (see Notation 4).
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(i) Since {e j}‘f" is a non increasing sequence of non void closed sets in the
compact space M, it follows that e, is a non void closed set.

(ii) Let t € enj\enprl forjeNifk=oc0andfor j=1,2,...,k—=1if k € N.
Then for 1 <7 <n; and for an open neighborhood U of t, by [3; Theorem 66.2]
we have Co gy = Cowzgen = CU)C sy = GUICe(pa(x) =
G(U)G(e,) = G(UNe;) # 0 by Claim 1 as U Ne; is an open neighborhood of
t. Consequently, G(U)z; # 0. Let k =c0. As t € e, \e,, ., Uy = ep\ep,,, 18
a clopen neighborhood of ¢, and as UyNe, = 0, we have CZG(G(UO)I"j+1) =

CG(UO)Zc(z,.J.+1) = G(UO)CG(pG(xn,-—H)) = G(UO)G(enj+1) = G(Uonen,-+,) =0
so that G(Uo)acanrl = 0. Thus m(t) =n; if t € enj\enj“ (see Definition 4).
When k € N, one can similarly show that m(t) = n, for t € e, \e, ., and
m(t)=n; iftee,\e, ,1<j<k-1

Suppose t € e,. Then t € e, for each i € N and consequently, as in the above,
G(U)zx,; # 0 for each open neighborhood U of ¢t and for each i € N. Hence, by
Definition 4, m_(t) = R, for t € e,. Conversely, suppose m_(t) = X, for some
t € M. Then for each open neighborhood U of t, G(U)z; # 0 for cach 7 € N.
Then, clearly, G(U)Zg(x,) # 0 so that 0 # Cqy 26 (i) = GU)Cs4(ps(z;) =
G(U)G(e;) = G(UNe;) and hence U Ne,; # 0 for each open neighborhood U
of t and for each i € N. Thus t € €, = e, for each i € N. Therefore, t € ¢,.

If M 4NN =0, then by Proposition 3 (iii) we have M , = {R;} and p(z,) =
pi(zy) = ... Consequently, C(pg(z;)) = Q, = I for all j € N. Thus
CO = v .

(iii) If £ = oo, then by (5) we have e, = enj\eanrl for j € N and
conscquently, by Theorem 1, ¢(t) = n; for t’e enj\enjH, for j € N. Thus,

by (i), o(t) = m,(t) for t € M\ey. If k is finite, then e, = e, ., and
k—1 k
M\e, = .L_'_Jl(e”j\e"j+1) U (e, \e, +1) and thus by (6), M\e, = U . Then

by (ii) and Theorem 1 it follows that ¢(t) = m,(t) for t € M\e,.

Now let ¢ € e,. If M 4NN # () and k is finite, then as seen above, e, = e,
and by Proposition 3(i), 8, € M, and Cpt1 = CQu, - .If M,NN =0, then as

scen above e; = M for j € N so that e; = M = €Qu, since Q, = I. Then,

in both cases, by Theorem 1, ¢(t) = X, and consequcntly, by (ii), m.(t) = ¥,
= ¢(t). If k= oo, note that by (i), e, # @ and hence such t exists in e - Now
we consider the following two cases.

Case 1. Ry € M 4.

Then C‘?No $é 0 and by Proposition 3, € D eQN , and hencc’ by Theorem ]_’
o

9]
6(t) = Ry for t € €Qug - Let t € (eo\eQNo)_ Since M = (jgl €q., UCQNO)’
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o0
there exists a net {t_} in (]L«Jl ean) Ueg,, Such that t, — t. Since the

function ¢ is continuous on M, we have ¢(t) = lim¢(t,). If ¢(t) = n € N,
a

then clearly ¢(t,) = n eventually and moreover, n = n; for some j € N.
This means that ¢, € e, ~ eventually and hence ¢ € e, . This is impossible
n; nj

o)
since M\ey = U e, . Thus the cardinals ¢(t,) converge to N, and hence
j=1 "

¢(t) = N,. Then by (ii) we have ¢(t) = m(t) for all t € e, and consequently,

¢ =m, on M. Since ¢ is continuous on M, m, is also continuous on M.

Case 2. Xy & M 4. ——

Let t € e;. In this case, M = ( ‘Ul eQ"J_> and hence there exists a net {t,} C
]:

o0
'Ul €Q., such that ¢, — t. As in the previous case, we have ¢(t) = lién o(t,)
]:

and ¢(t) # n for any n € N. Thus ¢(t) = R;. The rest of the argument is as in
Case 1 and hence (iii) holds in this case also.

(iv) This is immediate from the second part of (ii) and from (iii).

(v) f ) € M,, then @y, # 0 and by Proposition 3, €on, C € for all
j € N. Hence inte, # 0. Conversely, let e = intey, # 0. Then G(e) = G(e) #0
by Claim 1, and by (4) we have G(e) < G(e;) = CG(pG(xj)) =I- 3 Q,,
for j € N. Hence PEMANN, p<y

Gle) < R(I— > Qp):I— > Q, .

j=1 PEM 4NN, p<j n;EM 4NN

Since ) @, =1, it follows that R, € M, and that G(e) < Q. Morcover,
neM

by Proposition 3 we have €, C € for j € N and hence €Qn, C €0 Conse-
quently, on, C € Thus G(e) = Qy, - As ep\e is nowhere dense, it follows that
G(eg) = Qy, -

Now, let T'= M 4, NN. Then by Proposition 3(vi), M 4 is of the form M , =
{n;}¥ U{Ry} with k € N when T # 0 and finite, and M 4 = {X,} when T' = 0.
Then by (4) we have e, ,, = €0y, where n, = 0 if T = 0. Thus ¢, = €0,
and hence e, is clopen.

(vi) By (ii) and (iii), M, NN ={a(t): t € M\ey} = {m (t): t € M\e,}.
By (v), X, € M, if and only if inte, # 0. Since by (iv), ¢(t) = m.(t) = R, for
t € ey, (vi) holds.

This completes the proof of the lemma. O

The proof of the following lemma is similar to that of Lemma 1 and is left to
the reader.
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LEMMA 2. With A’ countably decomposable, suppose the OSD-multiplicity of
G() is finite and suppose H = @ Z(x;) is an OSD of H relative to G(-).
1

Let the discrete part pg = 0 and let e; = eg,(po(zi)) JOr 1 <4 < n. Then the
following assertions hold:

(i) Kelley’s multiplicity function ¢ is the same as m, on M.
(i) M4 is given by the range of ¢ (=m,).

LEMMA 3. Let Q be a non zero projection in A. Then the mazimal ideal space
My of AQ 1is homeomorphic to eg , the clopen set in M corresponding to Q.
Consequently, if Mg and eg are identified and if Gg 1is the canonical spectral
measure of AQ, then Gg(0) = G(0)Q for o € B(egq)-

Proof. Let ¥: C(M) = A and ¥5: C(Mg) = AQ be the inverses of
the Gelfand isomorphisms so that ¥(f) = T, and ¥y(g) =T, for f € C(M)

and g € C(Mg). For h € C(e,), let us define: h(t) = h(t) if t € e, and
hit)y =0if t € M \eQ. Then, as ey is clopen in M, h € C(M) and
b= hx,,- Let U(h) = ¥(h). Then ¥(h) = ¥(h)Q and clearly, ¥ is an in-
volution preserving algebraic isomorphism from C(e Q) into AQ. Given A € A,
let f € C(M) such that ¥(f) = A. Let h = (erQ)|eQ. Then h € C(ey)

and ¥(h) = ¥(f)Q = AQ. Thus the isomorphism ¥: C(eq) — AQ is onto.
Moreover, |[#(h)|| = [[¥(R)Q|l = sup |a(t)| = sup |h(t)| for b € C(ey) and
teM t€e,

hence ¥ is an isometric isomorphism of C(eq) onto AQ. Consequently, F' =
¥-lo ¥, C(Mg) — Cley) is an onto isometric isomorphism and hence, by [2;
Theorem IV.6.26] there exists a bijective bicontinuous mapping ®: eq — Mg
such that (Ff)(t) = f(®(¢)) for f € C(Mg) and t € e . Thus, for e clopen in
Mg, we have (Fx,)(t) = x, (®(t)) for ¢t € eq- In other words, Fy, = Xyt
for e clopen in Mg,. For o € B(M,), let T(o) be the clopen set associated
with o for which Y(o)Ac is meagre. Then evidently, T (®7!(0)) = @71 (Y (0))
as ® is a homcomorphism. Consequently, for o € B(M,) we have GQ(O') =
Vo (\re)) = Yo o F7 (Xam1(1(0)) = ¥(Xa-1(r(oy) = G(27(1(0)))Q =
G(T(271(0)))Q = G(371(0))Q.

This completes the proof of the lemma. O
THEOREM 5. Suppose the abelian von Neumann algebra A on H has its com-

mutant countably decomposable. Let G(-) be the canonical spectral measure of A
defined on B(M), M being the mazimal ideal space of A. If ¢ is Kelley’s mul-
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tiplicity function of A and m, and m, are the multiplicity functions associated
with G(-) as in Definition 4, then the following assertions hold:

(i) Fort€p,, {t} is clopen in M. Consequently, p_ is open in M.
(ii) Fort € M\p,, m,(t)=0; for t € pg, m(t) = 0.
(iit) m,(t) = ¢(t) € M4 for t € p_; m(t) = @(t) for t € M\Dp,_. Thus

8(t) = max(m,(t), (1)), t€ M\ (P, \p,)-

(iv) The following statements are equivalent:
(a) ¢ = max(mp,mc).
(b) p, is closed.
(c) max(m,,m,) is continuous.

(v) The following assertions hold:
(a) MyNN={¢(t): te M}nN.
(b) Ry € M4 if and only if e = ' (R,) has non void interior.
(c) When the range of ¢ is a finite set, R, € M, if and only if
¢~ (R,) is a non void open set.

Proof.

(i) Let t € p; and let Y({t}) be the clopen set in M corresponding to {t}
so that {t}AT({t}) is meagre in M. Then G(Y({t})\{t}) =0. As Y({t})\{¢}
is open, by Claim 1 in the proof of Lemma 1 we conclude that Y({t}) = {t}
and hence (i) holds.

(ii) By the definition of p_, m,(t) = 0 for t € M\ p_. Now let t € P .
By (i), Dg is clopen and morcover, Py \ pg is nowhere dense in M. Thus
G(pg) = G(Pg) so that G(eg) = G(M\ pg) = G(M \ bg). Since By is
clopen, U = P is an open neighborhood of ¢ such that U N (M \ p,) = 0.
Then G(U)G(cg) =0 and hence m_(t) = 0 by Definition 4.

(iii) Let t € pg. Suppose m,(t) = n € N (resp. m (t) = R;). Then
there cxists an orthonormal basis {z;}7 (resp. {z,}$°) in G({t})H Then,
as G(o)z, =0ift ¢ o and Go)z, =, if t e o, it follows that Z(z,) = [z}]

and hence G({t})H = G}ZG(a:k) (resp. = @Z (z,,)). Moreover, /’o( L) =0,

where J, denotes the Dlrac measure at {t} on B(M) and hence pg(z,) =
pG(a:Q) _—_— pG(a:n) (resp. pg(z,) = pglz,) = ...). Thus G{t})H =

G) Zg(x;) (resp. = EBZG(x isan OSD of G({t})H . Then, as Cg(ps(z,)) =
({t}) we have C’ZG(“) Cslpg(zy)) = G({t}) for k = 1,2,...,n (resp.

for k = 1,2,...). Moreover, by [3; Theorem 60.2] of Halmos, {Z zp) b,

580



ON KELLEY'S MULTIPLICITY FUNCTION OF AN ABELIAN VON NEUMANN ALGEBRA

(resp. {ZG(xk)}fo) is an orthogonal family of abelian projections in .A’. Hence
the projection G({t}) has UH-multiplicity n (resp. ®,). Thus n (resp. ®,)
€ M, and moreover, G({t}) < Q, (resp. < Q) by Corollary 1. Therefore,
t € ey, (resp. € eon) and hence, by Theorem 1 we have ¢(t) = m,,(t). Since
ea(eq) = M \ Pg (see the proof of (ii)), by Lemma 3 the maximal ideal space
M, of AG(cs) can be identified with M\ p, and by the last part of Lemma 3
it follows that the discrete part pgg(.,) = 0. Consequently, by Lemmas 1 and 2
we have m(t) = ¢(t) for t € M\ Pg. Hence (iii) holds.

(iv) From the definition of ¢ it is clear that ¢(t) # 0 for any ¢t € M. More-
over, (ii) implies that max(m,,(t),m.(t)) = 0 for t € pg\p¢ - These observations
show that (a) = (b). If pG is closed, then by (iii) we have ¢ = max(m,,,m,)
on M and hence (b) => (a) & (c). Finally, since M \ (g \ pg) is dense in
M and ¢ is continuous on M, (c) = (a) by (iii)

(v)(a) First let us observe that M, = {n € M, : Q,G(pg) # 0ju{neM,:
Q,G(cg) #0}. Thus M, NN = (M 46(p) N N) U (M 4g(cg) "N) . As shown
in the proof of (iii), {¢(t t e pG} NN = Mygpe) " N. By Lemmas 1, 2
and 3 it follows that {¢(t) : t € M \pg} NN =M g N N. Thus we have
{o(t): te M\(P@\PG } NN =M, NN. Now let t € Pg \ Pi- Then there
exists a net {t,} in p, such that ¢, — ¢t and consequently, by the continuity
of ¢, ¢(t) = lim¢>(t ) If ¢(t) = n € N, then ¢(t,) = n eventually and
hence t, € ey~ eventually. Thus n € {¢(u = pG} NN c M, NN. The
other posmblhty is ¢(t) = R, and in that case, clearly o(t) ¢ MA N N. Thus
M, NN={¢(t): teM}nN

(v)(b) Now let R, € M ,. Then the clopen set €Qr, is non void and by
Theorem 1 we have ¢(t) =R, forall t € €Qne . Thus eq, C € and hence e

has non void interior. Conversely, suppose e has non void 1nter10r U. Since ¢ is
continuous, e is closed and hence U C e. Let Q@ = G(U ) G(U). Then the non
zero projection () belongs to A and the clopen set ey = U C e.Hence ¢(t) =
forall t € ey . If QQ,, # 0 for some n € N, then for t € egg =e€g N eQn we
have ¢(t) = n by Theorem 1. This contradiction shows that X, € M, and
Q < Qy, - (Note that Q = Qy,, since by Theorem 1, ¢(t) =R, for t € €Qxy .)

(v)(c) Let us now suppose that the range of ¢ is a finite set. If ) € M ,, then

Qp, =1- 1\; g”' By hypothesis and by (v)(a) we can assume M NN = {nj}’lc
neMan

k
(resp. =0). Then M = ]91 €q., Ueg,, (resp. = eQNO) so that, by Theorem 1,

d7H(R,) = €q,, is clopen and non void in M. Conversely, if ¢~1(R;) is a non
void open set, then R € M 4 by (v)(b).
This completes the proof of the theorem. a
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