[1] BARNETT V. D.:
The joint distribution of occupation totals for a simple random walk. J. Austral. Math. Soc. 4 (1964), 518-528.
MR 0174095 |
Zbl 0218.60063
[2] BHAТ B. R.:
Some properties of regular Markov chains. Ann. Math. Statist. 32 (1961), 59-71.
MR 0119367
[4] EL-SHEHAWEY M. A.:
Limit distribution of first hittгng time of delayed random walk. J. Indian Soc. Statist. Oper. Res. XIII (1992), 63-72.
MR 1221463
[5] EL-SHEHAWEY M. A.:
On absorption probabilities for a random walk between two different barriers. Ann. Fac. Sci. Тoulouse Math. (6) I (1992), 1-9.
MR 1191730
[6] EL-SHEHAWEY M. A.-ТRABYA A. M.: On times to absorption of random walks. In: 18th International Conference for Statistics, Computer Science, Scientifics, Social Applications, Cairo, Ain Shams University, Faculty of Science, 1993.
[7] FELLER W.:
An Introduction to Probability Theory and Its Applicatгons. Vol. 1 (Зrd ed.), John Wiley and Sons, New York, 1967.
MR 0243559
[8] GOOD I. J.:
The frequency count of a Markov chain and the transition to contгnuous time. Ann. Math. Statist. 32 (1961), 41-48.
MR 0126948
[9] ISOIFESCU M.:
Finite Markov Processes and Their Applications. John Willey and Sons, New York, 1980.
MR 0587116
[10] KAC M.:
Random walk in the presence of absorbing barriers. Ann. Math. Statist. 14 (1945), 62-67.
MR 0011917 |
Zbl 0060.29101
[12] KEMPERMAN J. H. B.:
The Passage Problem for a Stationary Markov Chain. Univ. of Chicago Press, Chicago, 1961.
MR 0119226
[13] NEUТS M. F.:
General transition probabilities for finite Markov chains. Proc. Cambridge Philos. Soc. 60 (1964), 83-91.
MR 0158436
[14] PARZEN E.:
Stochastic Process. Holden-day, Inc, London, 1962.
MR 0139192
[15] SRINIVASAN S. K.-MEHAТA K. M.: Stochastic Process. Mc Grow-Hill, New Delhi, 1976.
[16] WEESAKUL B.:
The random walk between a reflecting and an absorbing barriers. Ann. Math. Statist. 32 (1961), 765-769.
MR 0125641