Previous |  Up |  Next

Article

References:
[1] BARNETT V. D.: The joint distribution of occupation totals for a simple random walk. J. Austral. Math. Soc. 4 (1964), 518-528. MR 0174095 | Zbl 0218.60063
[2] BHAТ B. R.: Some properties of regular Markov chains. Ann. Math. Statist. 32 (1961), 59-71. MR 0119367
[3] COX D. R.-MILLER H. D.: The Theory of Stochastic Processes. Methuen, London, 1965. MR 0192521 | Zbl 0149.12902
[4] EL-SHEHAWEY M. A.: Limit distribution of first hittгng time of delayed random walk. J. Indian Soc. Statist. Oper. Res. XIII (1992), 63-72. MR 1221463
[5] EL-SHEHAWEY M. A.: On absorption probabilities for a random walk between two different barriers. Ann. Fac. Sci. Тoulouse Math. (6) I (1992), 1-9. MR 1191730
[6] EL-SHEHAWEY M. A.-ТRABYA A. M.: On times to absorption of random walks. In: 18th International Conference for Statistics, Computer Science, Scientifics, Social Applications, Cairo, Ain Shams University, Faculty of Science, 1993.
[7] FELLER W.: An Introduction to Probability Theory and Its Applicatгons. Vol. 1 (Зrd ed.), John Wiley and Sons, New York, 1967. MR 0243559
[8] GOOD I. J.: The frequency count of a Markov chain and the transition to contгnuous time. Ann. Math. Statist. 32 (1961), 41-48. MR 0126948
[9] ISOIFESCU M.: Finite Markov Processes and Their Applications. John Willey and Sons, New York, 1980. MR 0587116
[10] KAC M.: Random walk in the presence of absorbing barriers. Ann. Math. Statist. 14 (1945), 62-67. MR 0011917 | Zbl 0060.29101
[11] KEMENY J. G.-SNELL J. L.: Finite Markov Chains. Springer-Verlag, New York, 1976. MR 0410929 | Zbl 0328.60035
[12] KEMPERMAN J. H. B.: The Passage Problem for a Stationary Markov Chain. Univ. of Chicago Press, Chicago, 1961. MR 0119226
[13] NEUТS M. F.: General transition probabilities for finite Markov chains. Proc. Cambridge Philos. Soc. 60 (1964), 83-91. MR 0158436
[14] PARZEN E.: Stochastic Process. Holden-day, Inc, London, 1962. MR 0139192
[15] SRINIVASAN S. K.-MEHAТA K. M.: Stochastic Process. Mc Grow-Hill, New Delhi, 1976.
[16] WEESAKUL B.: The random walk between a reflecting and an absorbing barriers. Ann. Math. Statist. 32 (1961), 765-769. MR 0125641
Partner of
EuDML logo