
Mathematica Slovaca

Mohamed A. El-Shehawey; A. M. Trabya
A matrix with an application to the motion of an absorbing Markov chain. I.

Mathematica Slovaca, Vol. 46 (1996), No. 1, 101--110

Persistent URL: http://dml.cz/dmlcz/130095

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/130095
http://project.dml.cz


iVtatherratica 
Slovaca 

© 1996 
fc. _,_, .... __. / - r t r k / - \ . . - .,.-.., , ., ~ Mathematical Institute 
Ma th . Slovaca, 4 6 (1996 ) , NO. 1 , 1 0 1 - 1 1 0 Slovák Academy of Sciences 

A MATRIX W I T H AN APPLICATION 
TO THE MOTION OF 

AN ABSORBING MARKOV CHAIN I 

MOHAMED A . E L - S H E H A W E Y — A . M . TRABYA 

(Communicated by Lubomir Kubdcek ) 

ABSTRACT. The determinant A m ( u , z | - ) = | I - S Q ' | , where Q' is the transpose 
of a tridiagonal matr ix Q of order mxm with r on the main diagonal and p and 
q on the first upper and lower diagonals respectively, p + r + g = 1, I is an. m X ra 
identity matr ix, and S stands for the mxm diagonal matr ix whose jth diagonal 
element is z and whose other diagonal elements are all equal to u, is evaluated. 
The result is applied to an absorbing Markov chain to find the P.G.F. of vk(j \ i), 
the total number of visits to s ta te j , s tart ing at i, before k is reached. Explicit 
expressions for the P.D., the mean, and the variance of vk(j \ i) are derived. The 
limiting forms of these results are also given. 

1. Introduc t ion 

Consider a stochastic process which makes transitions from one to another of 
a finite number of available states { 0 , 1 , . . . , IV} in accordance with an absorbing 
Markov chain, whose transition probability matrix is given by P = {p(i, j)}f=Q . 
Whenever the chain enters the state i, the next state j to which it will move is 
selected with probability p(i,j) such that 

p(i.i-f-l) =p 'l 

p(i,i) =r > 0 < i < N , p + r + ? = l . 

p ( M - l ) = q \ 

We assume that the states 0 and IV are both absorbing, while each of the 
states in TN__X = {1, 2 , . . . , IV — 1} is transient. We further assume that p(°) = 

(-°i »-°2 ' • • • 5-°/v-i) k e the vector of initial state occupation probabilities. Vari­
ous properties of the motion of an absorbing Markov chain have been considered 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 60J10, 60J15. 
K e y w o r d s : discrete-time Markov chains, t ime in trans ient s tate , joint probability generating 
function, matrix analysis. 
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in numerous tex tbooks , among t hem we ment ion P a r z e n (1962) [1 l l . C o x 

and M i l l e r (1965) [3], F e l l e r (1967) [7], K e m e n y and S n e 11 (1976) 

[11], S r i n i v a s a n and M e h a t a (1976) [15], and I o s i f e s c u (1980) [9\ 

and references cited there . Theoret ical formula for the universal probabi l i ty gen­

era t ing function of the frequency count of a Markov chain has been derived 

by G o o d (1961) [8] (see also B h a t (1961) [2] and N e u t s (1964) [13]). In 

this paper , we evaluate the de te rminan t A 7 V 1 ( H , z | ) = I — S Q ; | , where Qf is 

the t ranspose of a t r idiagonal ma t r ix Q obta ined by omi t t ing the first and last 

row and column of P , and S s tands for the (jV — 1) x (TV — 1) diagonal ma­

tr ix diag(H , . . . , H, z, H, . . . , u) wi th z being the jth component . It is not readily 

available in the l i tera ture on either ma t r ix theory or probabi l i ty theory. LTsing 

the result, explicit expression for the probabil i ty generat ing function (P.G.F.) 

of vk(j | i), the to ta l number of visits to a s ta te j , s t a r t ing at L before k. 

k £ TN_X = {0, jY} is reached, is obtained. T h e probabil i ty d is t r ibut ion (P.D.) . 

the mean, and the variance of vk(j | i) and the limiting forms of the results 

are also given. By an al ternat ive me thod similar to the ex t rapola t ion method of 

K e m p e r m a n (1961) [12], B a r n e t t (1964) [1] has derived similar formulae 

for simple r andom walk in the special case r = 0. 

2. Der ivat ion of an explicit expression for Am(u,z\j) 

Let us denote by A m ( H , z | ) the de te rminan t |l — S Q 7 | , where Qf is the 

t ranspose of a t r idiagonal ma t r ix Q of order mxm wi th r on the main diagonal 

and p, q on t he first upper and lower diagonals respectively, p -f- r + q = 1, and 

S be the mxm diagonal ma t r ix d i a g ( H , . . . , H, z, u,... , u) whose jth diagonal 

element is z and all other diagonal elements are equal to u. Then , A m ( H , z | ; ) 

mus t satisfy the difference equat ion: 

A
m(u,z\j) = (l-ur)&m_l(u,z\j)-pqu2Am_2(u,z\j) for j e T m , m > 2 . 

(1) 
and for m = 1 and m = 2 we have 

/ • \ f 1 — zr if 7 = 1 , / 
A1(u,zj) = \ J: ' ( l a ) 

J l 1 — ur II J 7-: 1 

and 

(1 — u r ) ( l — zr) — pquz if j = 1,2, 

(1 — ur)2 — pqu2 if j ^ 1,2 

T h e difference equat ion (1) can be rewri t ten in the equivalent form 

Ыu>z\j) = \ ,, . . ^ 2 _„..2 : f , ^ i o ( 1 Ь ) 

*m(y\j) I A = E ( A " - ^ > \ ) for J&Tm. m>2. 
-l{uiz\j) / \ ^m-2\Uj^\j 

102 



A MATRIX WITH AN APPLICATION 

Лiei 

E ^ 
1 — ur 

1 
-pqu 

0 

It follows after j — 2 iterations that 

A „ M _ " ) ^ __-2(^m-j+2(U^\j) 

A . - l M . ) / V A m - . + l M ; ) 

Hence, 

for j£Tm, m > 2 . (2) 

- - m M „ ) 
A m - l ( u . z l j ) 

_ E j ~ 
1 — ur 

1 0 Д д m _ . ( г x , z | Л 
ra-j ч 

for j e T m - { l , m } , m > 2 , (3) 

where A • („, z| ) is (m — j) x (m — j) tridiagonal determinant with 1 —Hr on 
the main diagonal and — qu and —pit on the first upper and lower diagonals re­
spectively. The determinant Am_j+1(u,z\j) is the same as Am_j(u,z\j) except 
that the first row is replaced by 1 x (m — j + 1 ) row vector (1 - zr, -gz, 0 , . . . , 0). 
It follows from (3) immediately that 

- \ n M i ) 
A m - l ( u . * ! _ . ) . 

™ _ 2 / l - u r -pquz\(l-zr -pquz\ (Am_j(u, z\}) \ 
1 i o ) \ - o ;ura_ i_1(«,zL)1 (4) 

:E» 
_ 2 fl-ur -pquz \ (1-zr -pquz \ „ r o . j _ 2 / A (u> A j) \ 

{ i o Д i o ; ь U_(«.-ш 
for j Є _ Г m - { l , m } , m > 2 . 

Let A- be the ith eigenvalue of E, and v{ the corresponding post-eigenvector. 

Then 
E ^ = ViXt, ieT2, 

that is EV = VA, where V = (vlt v2), A = (SijXi)i•<_-, . While the columns 

of V are the post-eigenvectors, the rows of V - 1 are the pre-eigenvectors, and 

we have E = V A V 1 or, more generally, Efe = VA f cV _ 1, k = 0,1, 2 , . . . , where 
A " = (*.,. A * ) i J 6 T . . a n d 

v=(Ai Ai2)' v^^-^i-l "£) 
ith 

Л 2 - 2 

(1 — ur) + ҳ/(l — ur)2 — •Ipqu2 

(1 — ur) — y (1 — ur)2 — Apqu2 

103 



MOHAMED A. EL-SHEHAWEY — A. M. TRABYA 

The eigenvalues Ax and A2 are distinct, except for u = 1 — (y/p ± ^/q) , but 
p > 0, r/ > 0 implies that neither of these points belongs to the interval 0 < 
u < 1. Then we see that 

/ x/c + l x k + l x \fc + i , \ \ M - i \ 

->-(A1-A,)- '( \ }:J | -*?&_:$_ )• w 
Substituting in formula (4) with appropriate forms from (5), by some simple 
calculations, we deduce that 

---.(«> *_) = ( A i - A _ ) - q ( l - 2 ! r ) A _ . m _ J . + 1 - p . « z [ ^ . m _ J . + ^ . _ l i m _ i + 1 ] } , (6) 

where 

4.,y = (A?-A£)(A?-.*_). 
The case j = m follows immediately from formula (2). If we replace j by ra—j+1 
in the result, we obtain the case j = 1. Hence, formula (6) is working for any 
j , j G Fm. We see that, with the appropriate change of notation, expression (6) 
agrees with K a c (1945) [10] and W e e s a k u l (1961) [16] in the case of r zero 
and S is the m x m diagonal matrix diag(u, •, it, •, u). 

3. The probability distribution of uk(j | i) 

We introduce the following counting process on the state space N ^ - 1 x TN_1, 
where N ^ - 1 is the set of all (Ar — l)-tuples of non-negative integers, associated 
with the absorbing Markov chain. We say that the associated process is in state 
[(n)>j]> where (n) is the vector (n-^ n 2 , . . . , nN_1) £ N ^ - 1 and j £ -Tv_i 
if and only if, after nx + n2 + • • • + nN_1 transitions, the process is in state 
j (before k, k £ TN_1 is reached) and has made nx, n 2 , . . . , n N l visits to 
the states 1, 2 , . . . , N — 1 respectively. We let P[ (n) , j] denote the probability 
that the state [(n), j ] is reached. We introduce the joint probability generating 
function (joint P.G.F.) 

H(-)=H(-_, >_,...,*„__) J . P[(n),.](z)<n>, (7) 
(n)'e_>0 

where zi, i £ TN1, are N — 1 dummy complex variables chosen so as to make 
the N — 1 series convergent, and e is the column vector of 1 's of order N — I. 

Following G o o d (1961) [8] (see also N e u t s (1964) [13] and I o s i f e s c u 
(1980) [9] ), we deduce that 

H(z) = (p*0^, . . . ,P%II*N-I)0 ~ QS)-X(/), (8) 
where Q is the truncated form of the transition matrix P obtained by omitting 
the first and last row and column, S = (S{ •zi)i jeTN_1

 a nd (/) = (I — Q)e . 
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If the chain starts in any given state i, then P^0) has zero components in all, 
but unit probability mass in zth position. We see that formula (8) becomes 

H.(z) = ( 0 , . . . , 0, -., 0 , . . . ,0)( l - Q S r V ) . (9) 

For varying the starting point i, we obtain a system of N — 1 eqLiations 

G(z) = S ( l - Q S ) " 1 ( / ) , (10) 

where G(z) is the transpose of the l x J V - 1 row vector 

(H x (z), IHL, ( * ) , . . . , H ^ z ) ) . 

Many interesting generating functions can be derived from formula (10) 
through an appropriate choice of the matrix S; the matrix (I — QS) is non-
singular (see N e u t s (1964) [13]). 

Explicit expression for the P.G.F. of vk(j | i), the total number of visits to 
state j , starting at i, before k, k E TN_X is reached, may be obtained from (10) 
by setting S equal to d i a g ( l , . . . , 1, z, 1 , . . . , 1) with z being the j t h component 
and using formula (6) with m = N — 1 and u = 1. It is easy verified that 

HAz) ( Ц ) 
z [qCjtl + pC,-)N_i] if i = j , 3~ Tv_i> 

tjCM + pCiN_x if i^j, i,j eTN_t, 

where C denotes the (x, y)th element of the inverse matrix (I - Q S ) " 1 , and 
X,У 

C i A = D \ 

CІ,N-I=D{ 

qj~ldi,N-j 

9ť_1K--.,.v-i 
L zqt-Ч^jf^ 

PN-J~ldi,i 

îľ-^zd.i 

if i = j , 

Z(dl,N-i - dj-i,N-i)] І f * < j . 

Іf І> j , 

[pN-i-1[di_jJ-z{díti-di_jti)] 

Іf І = J , 

if i < j , 

if i > j , 

D = [djtN_j - zidj^j - d1N)] and 

*,y x,y\u=i 

Thus, from (11), we have 

(P

x-qx)(py-qy)-

H (A - ní qÍdi-^-i " z^di-^-i ~ d^] 

rii\z) - u\ „_. , , N_. _, , -N-i, 
.P"~idi-i,i-zk> 

f o r PŽ q, P + q + r =1, and 

г-3,3 ~1,NІ 

if І < .7 > 

if i > j 
(12) 
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H{z) = B(ti-m-3)-*[(J-i)(N-j)-pN] if !;<j, 

\ j(i~ J) ~ ~ [j(i - J) - pN] if i > j 

for p = q, 2p + r = 1, where B = j(N — j) — z [j(N — j) — pN] . 

We see that with the appropriate change of notation the expressions (12) and 
(13) agree with that of B a r n e t t (1964) [1] in the case r zero. 

The probability distribution (P.D.) of vk(j \ i), k G T ^ _ . , is nothing, but 
the coefficient of znj in H^z), where j occurs exactly n- times. Hence, we 
obtain from formulae (12) and (13) that 

pr(vk(j | i) = n3) = 

( Wj-i.N-j 

" 2—7.7 
:di,N-j< 

C[\ - í V ^ - i ^ i v - j l 

if n. = 0, j > г, 

if rij = 0 , j < i, 

if n. = 1,2,... , j > i. 

yC[l-pN-^dl_hJd^N_]] ifn. = l,2,..., j< 

for L>7^q, p + g + r = 1, where 

(14) 

C = ^NІ1 ~~ dІ,N-jdl N) and 
X,У (Px-qx)(py~qy) 

and 

pr(i/(j | i) = т ) = < 

1-Л 

i-j 
N-j 

Іíü_ 

j 
(N - i)„ 

l N-j 

pN 

if r = 0 , j > г, 

if т = 0 , j < i, 

if т = 1,2,... , j >i. 

if т = 1,2,... , j < i 

1 _ - ^ 

(15) 

for p = g , 2 P + r = l , where „ = 7 ( A r _ j ) V ^ _ ^ 

The same value, (15), can also be obtained by using L'Hospital's rule with 
lirnit as p —> q in (14). 

It may be observed from formulae (14) and (15) that the probability distribu­
tion p?(vk(j | i) = n-) is geometric with modified first term, it will be geometric 
at the starting point i, i G TN__1, since the first term vanishes in this case. 
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4. The expected value and the variance of vk(J \ i) 

The expected values of vk(j | i), k E -I/v_i ? may be obtained by differen­
tiating formulae (12) and (13) with respect to z, and evaluating the result at 
z = 1, and are found to be 

E[»kÜ\Щ 
i a^-J) (1 - aj) (1 - a ^ " ' ) if j < i 

if j > i 
(16) 

(17) 

(p-q)(l-a»)\ (l-.a*)(l-aN-J) 

for p ^ q, a = q/p and p + g + r = 1; and 

r *. i I f J(N-i) if J < i 

when p = q , 2p + r = 1. 

Formulae: (16) and (17) in the case r = 0 agree with those given, for example 
by P a r z e n (1962) [14], B a r n e t t (1964) [1], and I o s i f e s c u (1980) [9]. 

The second moment may be obtained from 

d 2 

E[vk(j\if]=jJHl(z)\z=1+E[vk(j\i)] 

and is found to be 

E[Лi\iY] 
[2(1 - a')(l - aN~ђ - p(l - aN)(l - a)] 

(p-q)2(l-aN)* 

( (1 - o*)(l - aN~i) if j >i, 

' \ a*- ' ( l - a ' ) ( l - a*"*) if j < i 

for p ^ q, a = g/p and p + q + r = 1; and 

F t . .* , , I .,21 _ [ 2 j ( A T - j ) - p i V ] f j(lV-i) if j < i , 
* I M . h ) j - {pNy \i(N-j) i f j > i 

for p = q, 2p + r = 1. 

The value of V a r ^ ^ j | i)] follows immediately from formulae (16)-(19), 
yielding 

(18) 

(19) 

Var[iл*(Лi)] 

( p _ 0 ) 2 ( l _ 0 Ј V ) 2 

f ( l - a ^ l - a ^ ) 

. [ ( l - a ^ l - a ^ - a - a ^ b - g ) ] 

0 ^ ( 1 - 0 ^ ( 1 - 0 ^ ) 

l .[(1 - aj)(l - a л r - i ) a i - Ј ' - (p - q)(l - a N\ 
Іf J < І 

(20) 
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for p Ť^ q, a = q/p and p + q + r = 1; and 

, , r * , . , .,-, 1 fi(N-j)[i(N-j)-PN] ifj>i: 

Var [z/ (j I i)\ = } 

for p = q, 2p + r = 1. 

(PN)2 \ j(N - i) [j(N -i)- PN] if j < 
(21) 

5. The probability distribution of u°(j \ i) 
and its first two moments 

The analogous results for v°(j | i ) , the total number of visits to state j , 
starting at i, before zero is reached (0 is the single absorbing barrier), may be 
immediately obtained as the limiting form of those given in the previous sections. 
In particular, letting jY -> oc in (12)-(21), we get the P.G.F. of v°(j \ i) is 

J В Д 

if 3 > г, 

p + q] if j < i 

(l-ai)-z[(l-aJ)-p + q] 

a*(l - a*-') - z[aHl - a*-*) -p + q] 

(1 - a')(l - a*-*) -z[(l- ai)(l - a*-*) 

ÍOT p> q, p + q + r = 1, a = q/p; 

Hl{Z) = (l-V)-z[(l-V)-p + q] 

( (1 - V-*) - z[(l - V-* -P + q] Hj>i: 

\ z(q -p) if j < i 

for p<q,p + q + r = l, b = p/q; and 

(j - i ) - z [(j -i)-p] if j > i, 

pz 
Щz) = 

3 - z(j (j-p)i ìî j <i 

for p = g, 2p + r = 1. 

The probability distribution of v°(j \ i) is 

Г aҚl - aJ-*)(l - aJ ')- 1 if n. = 0 , j> 

pт(v°(j\i)=Пj) = { 
(1 - a ^ ) 

g(l - 0^(1 - aђ-1 

(22) 

(23) 

(24) 

l ßa * - j 

if r = 0 , j < i, 

if Пj = l,2,... , j > i , 

ii Пj = l,2,... , j <i 
(25) 
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for p>q, p + g + r = 1, a = q/p and g= -^—2L ( l - -f—^-) ' ; 
1 — aJ V 1 — a3 J 

pr(i/°(j | i) = n.) = < 

i f Пj; = 0, j > ѓ, ( (i-v-ђii-ы)-1 

0 if Пj =0, j <i, 

Є-ÍV-Чl - o ť)(l - ^ Г 1 if n,- = 1,2,... , j > i, 

Єi if n . 1,2,... , j < г 

— T7 Ч ™ . " 1 

(26) 

for p > q, p + q + r = 1, b = q/p and 01 = ~y~ (l - ^ _ ^ ) 

and, when p = a, 2p + r = l,we have 

pr(ľ°(j I 0 = n ; ) = < 

r 1 - i/j if n .̂ = 0 , j > i , 

0 if n • = 0 , j < i, 

Q2(i/j) if n̂ . = 1,2,... , f > i , 

o2 if n̂ - = 1,2,... , j < i, 

(27) 

П 7 — 1 

where g2 — ^ l\ — Rj . Thus, the distribution of t/°(j | i) is geometric for 

any j G TN — {0}, j = i, and will be modified geometrically for any j £ TN — {0}, 

J ^ i-
The mean and the variance of v°(j \ i) are 

E[Лi\i)] 
p-q 

( ( l - « г ) 
a*--Ҷl -ai) 

v-қъ1' - 1) 

l (ьг - 1) 

if 3 > i , P > q , 

if j < i , p > q , 

if Ј > i , P < 9, 

if Ј < i, p < q , 

(28) 

and 

L p l i ú 
(29) 

1 f j if j <i, p = q, 

j >i, p = q, 

where a = b"1 = q/p, p + q + r — 1; and 

Var(i/°(i | .)) = 

r (1 - a 0 ( r + 2<7 - 2a^ + a') if j > i , p > a, 
j _ I ( l - a i ) [ ( 2 - a ^ - ^ ) ( l - a J ' ) - p + a] i f j < . , p > a , (30) 

(P - q)2 (1 - 6 ť)(- + 2p + r-V - V~l)V' 

{ {l-V)(l-V -q+p) 

if 3 > i , P < q, 
if J < i , p < q , 

аnd 
.г fo,.iл\ i(г(2з-г-p) i f j > * , P = 9, 
VагЛjU = ^ . . . ч if І < i', P = q, 

(31) 
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where a — b~A = q/p, p -f q + r — 1. 

It is interesting to note that formulae (22)-(24), (28) and (29), in the case 
r — 0, are of the same forms as that obtained in B a r n e t t (1964) [1] (see also 
I o s i f e s c u (1980) [9]). 
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