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A MATRIX WITH AN APPLICATION
TO THE MOTION OF
AN ABSORBING MARKOV CHAIN I

MOHAMED A. EL-SHEHAWEY — A. M. TRABYA

(Communicated by Lubomir Kubdéek )

ABSTRACT. The determinant A, (u,z2|;) = [I-SQ’|, where Q' is the transpose
of a tridiagonal matrix Q of order m x m with r on the main diagonal and p and
q on the first upper and lower diagonals respectively, p+7r+q =1, l isan m xm
identity matrix, and S stands for the m x m diagonal matrix whose jth diagonal
element is z and whose other diagonal elements are all equal to u, is evaluated.
The result is applied to an absorbing Markov chain to find the P.G.F. of v*(j | 1),
the totai number of visits to state j, starting at ¢, before k is reached. Explicit
expressions for the P.D., the mean, and the variance of v*(j | i) are derived. The
limiting forms of these results are also given.

1. Introduction

Consider a stochastic process which makes transitions from one to another of
a finite number of available states {0,1,..., N} in accordance with an absorbing
Markov chain, whose transition probability matrix is given by P = {p(i, j)}?szo.
Whenever the chain enters the state ¢, the next state j to which it will move is
selected with probability p(i,7) such that

p(i,i+1) =p
p(i,7) =r O0<it<N, p+r+g=1.
p(i,i—1) =q

We assume that the states 0 and N are both absorbing, while each of the

states in Ty_; = {1,2,..., N — 1} is transient. We further assume that p® =

(p(lo),p(zo), e ,pgs)_l) be the vector of initial state occupation probabilities. Vari-

ous properties of the motion of an absorbing Markov chain have been considered
AMS Subject Classification (1991): Primary 60J10, 60J15.

Key words: discrete-time Markov chains, time in transient state, joint probability generating
function, matrix analysis.
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in numerous textbooks, among them we mention Parzen (1962) [11. C'ox
and Miller (1965) [3], Feller (1967) [7], Kemeny and Sunell (1976)
[11], Srinivasan and Mehata (1976) [15], and Tosifescu (1930) [9.
and references cited there. Theoretical formula for the universal probability gen-
erating function of the frequency count of a Markov chain has been derived
by Good (1961) (8] (see alsc Bhat (1961) [2] and Neuts (1964) [13]). In
this paper, we evaluate the determinant A, _, (71,, Z‘z) =1 -SQ’'|, where Q" is
the transpose of a tridiagonal matrix Q obtained by omitting the first and last
row and column of P, and S stands for the (N — 1) x (N — 1) diagonal ma-
trix diag(u,...,u,z,u,...,u) with z being the jth component. It is not readily
available in the literature on either matrix theory or probability theory. Using
the result, explicit expression for the probability generating function (P.G.F.)
of v*(j | 4), the total number of visits to a state j, starting at i. before k.
ke Ty_, ={0,N} is reached, is obtained. The probability distribution (P.D.).
the mean, and the variance of v*(j | i) and the limiting forms of the results
are also given. By an alternative method similar to the extrapolation method of
Kemperman (1961) [12], Barnett (1964) [1] has derived similar formulae
for simple random walk in the special case r = 0.

2. Derivation of an explicit expression for A (u, z}))

Let us denote by A, (u,z|;) the determinant [I — SQ'[, where Q" is the
transpose of a tridiagonal matrix Q of order m xm with r on the main diagonal
and p, ¢ on the first upper and lower diagonals respectively, p+r+¢ = 1. and
S be the m x m diagonal matrix diag(u,...,u,z,u,...,u) whose jth diagonal
element is 2 and all other diagonal elements are equal to u. Then, A, (u, :f‘j)
must satisfy the difference equation:

A,m(u,zlj) = (l—ur)Am_l(u,zfj)—pqu2Am_2(u,z|j) for jeT, m>?2.

(1)
and for m =1 and m = 2 we have
1l—2r ifj=1,
Ay (u,2]) = L (1a)
1—ur if j#1
and
(1 —=ur)(1—2r)—pquz if j=1,2, (1b)

A, (u,z],) =
2 Z|J) {(1—ur)7‘—pqu2 if j#1,2.

The difference equation (1) can be rewritten in the equivalent form

(Am (u, le) )> = < A"‘l(u’zlj)> for jeT,. m>2.

Arnfl(qulj Am;Q(u,z]j)
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([ l—ur —pqu?
= (1 ).

It follows after j — 2 iterations that

<Am (U,Z|j) )> — ]Ej_2 <A7n—j+2(uaz|j)) for .7 eT , m> 2. (2)

A, z|; AN (u, Z|J) "

Hence,

where

<Am(u’z|j) > — Ei2 <1 —ur *pquz> <Am—j+1(“"’j)‘>
Anl—l(u’Z'j) 1 0 Am_ﬂ (U,Z|]) ‘
fOI‘ j € T"l - {I,Wl}, m > 27 (3)

where A (u, z|J) is (m—j)x (m—j) tridiagonal determinant with 1 —ur on
the main diagonal and —qu and —pu on the first upper and lower diagonals re-
spectively. The determinant A,,, ;4 (u, z|]) is the same as Am_j (u, z|J) except

that the first row is replaced by 1x (m—j+1) row vector (1—zr, —qz,0,...,0).
It follows from (3) immediately that

<Am(u,z|j) ) _
Am_l(u,z|j)
_pi-? (1 —ur —pquz) (1 — zr ~pquz) (Am_j (u,zlj) >

1 0 1 0 Am_]._l(u,zlj) (4)
-2 (1 —ur —pquz) <1 —zr —pquz> Em—i—? <A2 (u, 2|;) )

1 0 1 0 A, (u, Zlg)

for jeT,—{1,m}, m>2.

Let A, be the ith eigenvalue of E, and v; the corresponding post-eigenvector.

Then

Ev; = v;A;, €Ty,
that is EV = VA, where V = (v;,¥,), A = (5, ;A;); jer, - While the columns
of V are the post-eigenvectors, the rows of V=1 are the pre-eigenvectors, and
we have E == VAV~! or, more generally, Ef = VA¥V~-! k=0,1,2,..., where
Ak = (6i,j’\:;‘:)i,jeT2’ and

(M A Ly a1 1=
V_<1 1)) \ ~(Al )\2) <_1 /\1

with

A = [(1 —ur) + \/(1 —ur)? —4pqu2] ,

[(1 —ur) — /(1 —ur)? — 4pqu2] .

1
2
1
A2:§
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The eigenvalues A, and A, are distinct, except for u = 1 — (\/ﬁ + \/(j)z, but
p > 0, ¢ > 0 implies that neither of these points belongs to the interval 0 <
u < 1. Then we see that
k41 yk+1 _y yk+1 k+1
B o007 (M T TR )
AT = A5 — A AT + A A

Substituting in formula (4) with appropriate forms from (5), by some simple
calculations, we deduce that

A (U, le) = (N _AZ)-I{(l—ZT)Aj,deA-l _pquz[Aj1m~j +Aj71,mfj+1]} , (6)
where
A, = (T =2 = A3).
The case j = m follows immediately from formula (2). If we replace j by m—j+1
in the result, we obtain the case j = 1. Hence, formula (6) is working for any
J, j €T, . Wesee that, with the appropriate change of notation, expression (6)

agrees with Kac (1945) [10] and Weesakul (1961) [16] in the case of r zero
and S is the m x m diagonal matrix diag(u,-,u,-,u).

3. The probability distribution of v*(j | 1)

We introduce the following counting process on the state space NV =1 x T\, .
where NV~1 is the set of all (N — 1)-tuples of non-negative integers, associated
with the absorbing Markov chain. We say that the associated process is in state
[(n),7], where (n) is the vector (n;,n,,...,ny_;) € NV"!' and j € Ty _,
if and only if, after n, + n, +--- 4+ ny_, transitions, the process is in state
j (before k, k € T} _, is reached) and has made n;,n,,...,ny_; visits to
the states 1,2,..., N — 1 respectively. We let P[(n),j] denote the probability
that the state [(n),]] is reached. We introduce the joint probability generating
function (joint P.G.F.)

H(z) = H(zy, 2, -, 25 _1) Z Pl(n),j](z)™, (7)
(n)'e>0

where z;, ¢ € Ty,_,, are N —1 dummy complex variables chosen so as to make
the N — 1 series convergent, and e is the column vector of 1’s of order N — 1.

Following Good (1961) [8] (see also Neuts (1964) [13] and Iosifescu
(1980) [9] ), we deduce that

H(z) = (0”2, .., P 1z ) (1= QS) (), (8)

where Q is the truncated form of the transition matrix P obtained by omitting
the first and last row and column, S = (8, ;2,), ;cr,_, and (f) = (I - Q)e.
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If the chain starts in any given state i, then P(®) has zero components in all,
but unit probability mass in ith position. We see that formula (8) becomes

H,(z) = (0,...,0,2,,0,...,0)(1 — QS)"!(f). (9)
For varying the starting point ¢, we obtain a system of NV — 1 equations
G(2) =S(1-QS)"(f), (10)
where G(z) is the transpose of the 1 x N — 1 row vector

(Hl (z)’H2(z)v cee 7HN~1(Z)) .

Many interesting generating functions can be derived from formula (10)
through an appropriate choice of the matrix S; the matrix (I — QS) is non-
singular (see Neuts (1964) [13]).

Explicit expression for the P.G.F. of v*(j | i), the total number of visits to
state j, starting at 7, before k, k € Ty, _, is reached, may be obtained from (10)
by setting $ equal to diag(l,...,1,2,1,...,1) with z being the jth component
and using formula (6) with m = N —1 and u = 1. It is easy verified that

z[qC]“l +pCj,IV——1] ifi=j, j€ TN_l,

p s 11
in,l +pci,N_1 lf ? 7&]’ W) € TN—I’ ( )

H,(z) = {

where C, ~ denotes the (z,y)th element of the inverse matrix (I - QS)~", and

qj—ldl,N—j ifi=j,

Cin=Dg ¢ d;_yn_;—2(d yoi — d;_in-i)] i<y,
Zqi_ldl,N—i ife>7,

pN—j—ldlyj ifi=j,

Ci,N—l -D pN—i—lzdu if 1<y,
PN A, - 2y — d;_; ;)] ifi>jg,

-1
D=[d;n_;j—2(d;n_; - d )] and
d-t,y = Ax,y|u=1 = (pz - qz)(Py - qy)_
ThUS, from (11), we have
qidj-i,N—j - Z[qidj—i,N—j - dl,N] ifi<y,

. . e (12)
AR ANTES [ A TR ST R P

H;(2) = D{

forp#q,p+q+7r=1, and
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(G =N =j) = =[G =) (N —j)—pN] if i <.

13
j(i=3) = z[3(i = j) — pN] ifi>j e

H,(z) = B{
for p=gq, 2p+r =1, where B = j(N —j) — z[j(N — j) — pN].
We see that with the appropriate change of notation the expressions (12) and
(13) agree with that of Barnett (1964) [1] in the case r zero.

The probability distribution (P.D.) of v*(j | i), k € T%_,, is nothing. but
the coefficient of 2™ in H,(z), where j occurs exactly n. times. Hence. we

J
obtain from formulae (12) and (13) that
pr(vf(j | i) = nj) =
q'd;_in-; ifn; =0, j>1i,
P R if n; =0, j <4, (1)
PN O = gid,_; y_gdin ) i =120, j >4,
C—pN=id,_  diy ] ifn,=12.... j<i

for p#q, p+q+r =1, where

C= dl,N(l - dj_,ll\/—jdl,N) and dx,y =@ = q")P¥ —¢Y);

and
1—% itn, =0, j>4,
1—] . .
. N—Jj ]fTLjZO, 1<,
pr(v(j [4) =n;) = iw ' o (15)

i 1fnj=l,2,..., 71>,

k(]}[v—__zj).—“’ ifn,=1,2,..., j<i
N pN \"
for p=gq, 2 +r=1,wherew=.p .(1—. ) .

oo iIN=5 i =3)

The same value, (15), can also be obtained by using L'Hospital’s rule with
limit as p — ¢ in (14).

It may be observed from formulae (14) and (15) that the probability distribu-
tion pr(v*(j | 7) = nj) is geometric with modified first term, it will be geometric
at the starting point 4, < € T _,, since the first term vanishes in this case.
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4. The expected value and the variance of v*(j | i)

The expected values of v*(j | i), k € T%_,, may be obtained by differen-
tiating formulae (12) and (13) with respect to z, and evaluating the result at
z =1, and are found to be

1 { a(’lfj)(l—aj)(l—aN'i) if j <ua,

BV = o aa—am (1-a¥)(1 - aN~9) it g >

for p#q,a=gq/pand p+q+r=1; and
. 1 (J(N—=1i) if j<i,
EJk —— 17
G 1) pN{i(N—j) if j>i 17)

when p=g¢q, 2p+7r=1.
Formulae (16) and (17) in the case r = 0 agree with those given, for example,
by Parzen (1962) [14], Barnett (1964) [1], and Iosifescu (1980) [9].

The second moment may be obtained from

(16)

BRG] = LB (2],

dZZ 1+E[Vk(j |Z)]

and is found to be
[2(1 —ad)(1 —aV77) —p(1 —a™¥)(1 - a)]

k(2] —
FLeI = a2~ a")?
(L-a)(1—a¥=)  if i,
’{ai‘j(1~aj)(1—aN“") if j <14 (18)
for p#4q, a=¢q/p and p+q+r =1; and
ke [2(N =) = pN] [ J(N—=d) if j<3,
R R s P S

for p=gq, 2p+r=1.
The value of Var[v*(j | )] follows immediately from formulae (16)-(19),
vielding
Var[uk(j |4)] =
(1-a*)(1—a"9)

. A if j >1,
1 (1 =a")(1 =a") = (1 =a")(p - q)]
(P— @21 —aM)? | gimi(1 — a9)(1 - V)
‘ o if <1
[(1=a)(1 = aV a7 — (p—g)(1 - o)
(20)
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for p#q,a=q/p and p+q+r=1; and

1 { i(N = j)[i(N —j)—pN] if j =i,

ko-1 ] _ )
Vel U= Ny - yliv -] i <

for p=gq, 2p+r=1.

5. The probability distribution of 1°(j | 7)
and its first two moments

(21)

The analogous results for 1°(j | i), the total number of visits to state j.
starting at i, before zero is reached (0 is the single absorbing barrier), may be
immediately obtained as the limiting form of those given in the previous sections.

In particular, letting N — oo in (12) - (21), we get the P.G.F. of v°(j | i) is
1
H (z)= -
O i) -a)—p+d
{ai(l —aj_i)—z[ai(l—a,j_i) —p+q] if j >0, 2)
(1= a9)(1 = ai79) - 2[(1 — I)(1 - aiF) —p+q] if j<i
forp>q,p+q+r=1, a=q/p;
1
Hi(z) = ; j
(1-b) —z[(1-b) —p+d]
{Grmmddememord
2(q - p) if j<i
for p<gq,p+q+r=1,b=p/q;and
N TR
R U A
j—2(—p) pz if j <1
forp=gq, 2p+r=1.
The probability distribution of v°(j | 1) is
a’(l-a ) (1—a)™' ifn;=0, j=>1,
o (1—ad™) ifn. =0, j<i,
pr(llO(J I 'L) = n]) = . - . J P .
o(1—a*)(1—a?) if n;=1,2,..., j 21,
oat~J ifn,.=1,2,..., <1
’ (25)
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b

— — nj-—-1
f0rp>q,p—}-q—}—r:1,a:q/pandg:f——q,(l—u)J ;

1—-a’ 1—-al
(1 -1 - b)) 1 if n; =0, j>i,
pr(v°(j i) =n;) = o R .
o (1 =) (1 - b) if n; =1,2,..., j>1,
0 ifﬂ‘j:1,2,..., ]S’L
(26)
— — n;-—-1
for p > q, =1,b= and o, = 2 p.(l—q p.)J ;
P>q,ptq+r g/p and ¢ = T L ;
and, when p =¢, 2p+r =1, we have
1-i/j ifn;=0, j>1,
0 ifn, =0, j<i
(V3G 1) =n,) = 7o T 27
p](lj (]|Z) _7) 92(1/]) 1fn]:1,2’, ‘722, ( )
05 ifn; =12,..., j<i,

n;—1
where o, = 32<1 - 3) T Thus, the distribution of v°(j | 1) is geometric for
J
any j € Ty—{0}, j = i, and will be modified geometrically for any j € T, —{0},

J#.
The mean and the variance of v°(j | i) are
(1-a’) if j>i, p>gq,.
o 1 a"‘j(l—aj) if j<i, p>gq,
BRG] = ——1 o (28)
p—q| ¥ -1) ifj>i, p<q,
(b -1) if j<i, p<yq,
and g icq
. 12 nmjgs, p=g,
0 _ 1
B 19 p{i ifj>1i, p=gq, (29)
where a =b"! =¢q/p, p+q+7r=1; and
Var(uo(j | z)) =
(1 —a?)(r 429 — 207 + a) if j >4, p>gq,
1 (1—ah)[2—al D)1 —a’)—p+4q] if j<i, p>q, (30)
(P—q)?) 1=b)A+2p+7—b —b)bI~"  if j>4i, p<yq,
(1-b)(1~b —g+p) ifj<i, p<yq,
and (2) — i ) if g >
. 1 )] —1—p nmjy=zt, p=gq,
VaruO'Z)Z—{.. e . 31
(v°G 1) p* L j(G—p) if j<¢, p=gq, (31
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where a =b"'=q/p, p+q+r=1.

It is interesting to note that formulae (22)-(24), (28) and (29). in the case

r =0, are of the same forms as that obtained in Barnett (1964) [1] (see also
ITosifescu (1980) [9]).

8
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