Previous |  Up |  Next

Article

References:
[1] BALACHANDRAN K.-CHANDRASEKARAN M.: Existence of solutions of a delay differential equation with nonlocal condition. Indian J. Pure Appl. Math. 27 (1996), 443-449. MR 1387239 | Zbl 0854.34065
[2] BENCHOHRA M.-NTOUYAS S.: Existence of mild solutions on noncompact intervals to second order initial value problems for a class of differential inclusions with nonlocal conditions. Comput. Math. Appl. 39 (2000), 11-18. MR 1763833 | Zbl 0955.34047
[3] BENCHOHRA M.-NTOUYAS S.: Existence of mild solutions on semiinfinite interval for first order dгfferential equations with nonlocal conditions. Comment. Math. Univ. Carolin. 41 (2000), 485-491. MR 1795080
[4] BENCHOHRA M.-NTOUYAS S.: Existence of mild solutions of semilinear evolution inclusions with nonlocal conditions. Georgian Math. J. 7 (2000), 221-230. MR 1779548
[5] BENCHOHRA M.-NTOUYAS S.: An existence result for semilinear delay integrodifferential inclusions of Sobolev type with nonlocal conditions. Comm. Appl. Nonlinear Anal. 7 (2000), 21-30. MR 1769964 | Zbl 1110.34341
[6] BENCHOHRA M.-NTOUYAS S.: Existence of mild solutions for certain delay semilinear evolution inclusions with nonlocal conditions. Dynam. Systems Appl. 9 (2000), 405-412. MR 1844640
[7] BENCHOHRA M.-NTOUYAS S.: Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces. J. Math. Anal. Appl. 258 (2001), 573-590. MR 1835560 | Zbl 0982.45008
[8] BYSZEWSKI L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), 494-505. MR 1137634 | Zbl 0748.34040
[9] BYSZEWSКI L.-AKCA H.: On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl. Math. Stochastic Anal. 10 (1997), 265-271. MR 1468121
[10] CONSTANTIN A.: Global existence of solutions for perturbed differentгal equatгons. J. Annali Mat. Pura. Appl. 168 (1995), 237-299. MR 1378247
[11] DAUER J.-BALACHANDRAN K.: Existence of solutions for an integrodifferential equation with nonlocal condition in Banach spaces. Libertas Math. 16 (1996), 133-143. MR 1412536 | Zbl 0862.45016
[12] DEIMLING К.: Multivalued Differential Equations. Walter de Gruyter, Berlin-New York, 1992. MR 1189795 | Zbl 0820.34009
[13] DUGUNDJI J.-GRANAS A.: Fixed Point Theory. Monogгafie Matematyczne, PWN Warsawa, 1982. MR 0660439 | Zbl 0483.47038
[14] ERBE L.-KONG Q.-ZHANG B. : Oscillation Theory for Functional Differential Equations. Pure and Applied Mathematics, Marcel Dekker 190, Marcel Dekker, Inc, New York. 1994. MR 1309905
[15] HALE J.: Theory of Functional Differential Equations. Springer, New York, 1977. MR 0508721 | Zbl 0352.34001
[16] HENDERSON J.: Boundary Value Problems for Functional Differential Equations. World Scientific, Singapore, 1995. Zbl 0841.34068
[17] HERNANDEZ E.-HENRIQUEZ H.: Existence results for partial neutral functional differential equations with unbounded delay. J. Math. Anal. Appl. 221 (1998), 452-475. MR 1621730 | Zbl 0915.35110
[18] HERNANDEZ E.-HENRIQUEZ H.: Existence of periodic solutions of partial neutral functional differential equations with unbounded delay. J. Math. Anal. Appl. 221 (1998), 499-522. MR 1621738 | Zbl 0926.35151
[19] HU S.-PAPAGEORGIOU N.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht-Boston-London, 1997. MR 1485775 | Zbl 0887.47001
[20] LASOTA A.-OPIAL Z.: An application of the Kakutani-Ky-Fan theorem, in the theory of ordinary differential equations. Bull. Polish Acad. Sci. Math. 13 (1965), 781-786. MR 0196178 | Zbl 0151.10703
[21] LIN Y.-LIU, J : Semilinear integrodifferential equations with nonlocal Cauchy problem. Nonlinear Anal. 26 (1996), 1023-1033. MR 1362770 | Zbl 0916.45014
[22] MA T.: Topological degrees for set-valued compact vector fields in locally convex spaces. Dissertationes Math. (Rozprawy Mat.) 92 (1972), 1-43. MR 0309103
[23] MARTELLI M.: A Rothe's type theorem for non-compact acyclic-valued map. Boll. Un. Mat. Ital. (4) Ser. 11, Suppl. Fasc. no. 3 (1975), 70-76. MR 0394752
[24] NTOUYAS S.: Global existence results for certain second order delay integrodifferential equations with nonlocal conditions. Dynam. Systems Appl. 7 (1998), 415-426. MR 1639604 | Zbl 0914.35148
[25] NTOUYAS S.-TSAMATOS P.: Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal. Appl. 210 (1997), 679-687. MR 1453198 | Zbl 0884.34069
[26] NTOUYAS S.-TSAMATOS P.: Global existence for second order semilinear ordinary and delay integrodifferential equations with nonlocal conditions. Appl. Anal. 67 (1997), 245-257. MR 1614061 | Zbl 0906.35110
[27] NTOUYAS S.-TSAMATOS P.: Global existence for semilinear evolution integrodifferential equations with delay and nonlocal conditions. Appl. Anal. 64 (1997), 99-105. MR 1460074 | Zbl 0874.35126
[28] PAPAGEORGIOU N.: Boundary value problems for evolution inclusions. Comment. Math. Univ. Carolin. 29 (1988), 355-363. MR 0957404 | Zbl 0696.35074
[29] PAZY A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983. MR 0710486 | Zbl 0516.47023
[30] SCHAEFER H. : Über die Methode der a priori-Schranken. Math. Ann. 129 (1955), 415-416. MR 0071723 | Zbl 0064.35703
[31] YOSIDA K.: Functional Analysis. (6th ed.), Springer-Verlag, Berlin, 1980. MR 0617913 | Zbl 0435.46002
Partner of
EuDML logo