[1] BERCOV R. D.:
The double transitivity of a class of permutation groups. Canad. J. Math. 17 (1965), 480-493.
MR 0174624 |
Zbl 0132.27101
[2] BURNSIDE W.:
Theory of Groups of Finite Order. (2nd ed.), Cambridge University Press. London. 1911.
MR 1575665
[3] HUPPERT B.:
Endlische Gruppen I. Springer-Verlag, Berlin, 1967.
MR 0224703
[4] MARUŠIČ D.-SCAPELLATO R.:
Characterizing vertex-transitive pq-graphs with an imprimitive automorphism subgroup. J. Graph Theory 16 (1992), 375-387.
MR 1174460 |
Zbl 0764.05035
[5] MARUŠIČ D.-SCAPELLATO. R.:
Imprimitive representations of SL(2,2k). J. Combin. Theory Ser. B 58 (1993), 46-57.
MR 1214891
[6] MARUŠIČ D.-SCAPELLATO R.:
Classifying vertex-transitive graphs whose order is a product of two primes. Combinatorica 14 (1994), 187-201.
MR 1289072 |
Zbl 0799.05027
[7] NAGAI O.:
On transitive groups that contain non-Abelian regular subgroups. Osaka Math. J. 13 (1961), 199-207.
MR 0130303 |
Zbl 0103.01403
[8] NAGAO H.:
On transitive groups of order 3p. J. Math. Osaka City Univ. 14 (1963), 23-33.
MR 0158003
[9] PRAEGER C.-XU M. Y.:
Vertex primitive graphs of order a product of two distinct primes. J. Combin. Theory Ser. B 59 (1993), 245-266.
MR 1244933 |
Zbl 0793.05072
[10] PRAEGER C.-WANG R. J.:
Symmetric graphs of order a product of two distinct primes. J. Combin. Theory Ser. B 58 (1993), 299-318.
MR 1223702 |
Zbl 0793.05071
[11] SCHUR I.: Zur Theorie der Einfach Transitiven Permutations gruppen. Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. (1933), 598-623.
[13] SOOMRO K. D.:
Nonabelian Burnside groups of certain order. Riazi J. Karachi Math. Assoc. 7 (1985), 1-5.
MR 0890069
[14] WANG R. J.-XU M. Y.:
A classification of symmetric graphs of order 3p. J. Combin. Theory Ser. B 58 (1993), 197-216.
MR 1223693 |
Zbl 0793.05074
[15] WIELANDT H.:
Zur Theorie der Einfach Transitiven Permutationsgruppen. Math. Z. 40 (1935), 582-587.
MR 1545582 |
Zbl 0012.34303
[16] WIELANDT H.:
Zur Theorie der Einfach Transitiven Permutationsgruppen II. Math. Z. 52 (1947), 384-393.
MR 0033817