Previous |  Up |  Next

Article

References:
[1] EVANS T.: Embedding theorems for multiplicative systems and projective geometries. Proc. American Math. Soc. 3, 1952, 614-620. MR 0050566 | Zbl 0047.02102
[2] GOMES G. M. S., HOWIE J. M.: Nilpotents in finite symmetric inverse semigroups. Proc. Edinburgh Math. Soc., (2) 30, 1987, 383-395. MR 0908445 | Zbl 0629.20037
[3] GOMES G. M. S., HOWIE J. M.: On the ranks of certain finite semigroups of transformations. Math. Proc. Cambridge Philos. Soc., 101, 1987, 395-403. MR 0878889 | Zbl 0622.20056
[4] HOWIE J. M.: The subsemigroup generated by the idempotents of a finite full transformation semigroup. J. London Math. Soc. 41, 1966, 707-716. MR 0219649
[5] HOWIE J. M.: An Introduction to Semigroup Theory. Academic Press, London, 1976. MR 0466355 | Zbl 0355.20056
[6] HOWIE J. M.: Embedding semigroups in semibands: some arithmetical гesults. Quart. J. Math. Oxford (2), 32, 1981, 323-337. MR 0625644
[7] HOWIE J. M., MARQUES-SMITH M. P. O.: Inverse semigroups generated by nilpotent transformations. Proc. Royal Soc. Edinburgh A99, 1984, 152-162. Zbl 0581.20062
[8] NEUMANN B. H.: Embedding theorems for semigroups. J. London Math. Soc. 35, 1960, 183-192. MR 0163969 | Zbl 0090.01701
[9] PASTIJN F.: Embedding semigroups in semibands. Semigroup Forum 14, 1977, 247-263. MR 0453900 | Zbl 0363.20052
[10] SUBBIAH S.: Another proof of a theorem of Evans. Semigroup Forum 6, 1973, 93 -94. MR 0376930 | Zbl 0255.20043
[11] SULLIVAN R. P.: Semigroups generated by nilpotent transformations. J. Algebra (to appear). MR 0910387 | Zbl 0626.20051
Partner of
EuDML logo