Previous |  Up |  Next

Article

References:
[1] AGLIARDI R.: Cauchy problem for non-kowalewskian equations. Internat. J. Math. 6 (1995), 791-804. MR 1353995
[2] AGLIARDI R.: Cauchy problem for evolution equations of Schrodinger type. J. Differential Equations 180 (2002), 89-98. MR 1890599
[3] DIONNE P.: Sur les problémes de Cauchy hyperboliques bien posés. J. Anal. Math. 10 (1962), 1-90. MR 0150475 | Zbl 0112.32301
[4] IVRII V. YA.-PETKOV V. M.: Necessary conditions for the Cauchy problem for non strictly hyperbolic equations to be well posed. Uspekhi Mat. Nauk. 29 (1974), 3-70. MR 0427843 | Zbl 0312.35049
[5] LEVI E. E.: Caratteristiche multiple e problema di Cauchy. Ann. Mat. Pura Appl. (4) 16 (1909), 161-201.
[6] MIZOHATA S.: Lectures on Cauchy Problem. Tata Inst. of Fund. Research Lectures on Mathematics and Physics. Mathematics. Vol. 35, Tata Inst, of Fund. Research, Bombay, 1965. MR 0219881 | Zbl 0176.08502
[7] MIZOHATA S.-OHYA Y.: Sur la condition de E. E. Levi concernent des equations hyperboliques. Publ. Res. Inst. Math. Sci. 4 (1968), 511-526. MR 0276606
[8] MOSER J.: A rapidly convergent interaction method and non-linear partial differential equations. Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) 20 (1966), 256-315.
[9] TAKEUCHI J.: A necessary condition for the well-posedness of the Cauchy problem for a certain class of evolution equations. Proc. Japan. Acad. 50 (1974), 133-137. MR 0367491 | Zbl 0308.35061
[10] TAKEUCHI J.: Some remarks on my paper "On the Cauchy problem for some non-kowalewskian equations with distinct characteristic roots". J. Math. Kyoto Univ. 24 (1984), 741-754. MR 0775984 | Zbl 0572.35020
[11] TAKEUCHI J.: Le Probleme de Cauchy pour Certaines Equations aux Derivees Partielles du Type de Schrodinger. These de Doctorat de l'Universite Paris 6, 1995.
Partner of
EuDML logo