[2] ALIPRANTIS C. D., BURKINSHAW O.:
Locally Solid Riesz Spaces. Academic Press, New York, 1978.
MR 0493242 |
Zbl 0402.46005
[3] BERNAU S. J.:
Unique representation of Archimedean lattice groups and normal Archimedean lattice rings. Proc. London Math. Soc. 15 (1965), 599-631.
MR 0182661
[4] BOCCUTO A., CANDELORO D.: Sull'estensione alla Stone per medie invarianti. Preprint.
[6] FILTER W.:
Representation of Archimedean Riesz spaces - a survey. Preprint.
MR 1307578
[7] FREMLIN D. H.:
A direct proof of the Matthes-Wright integral extension theorem. J. London Math. Soc. 11 (1975), 276-284.
MR 0380345 |
Zbl 0313.06016
[9] KATS M. P: On the continuation of vector measures. Sib. Math. J. 13 (1973), 802-809.
[10] LEBLANC L., FOX G. E.:
On the extension of measure by the method of Borel. Canad. J. Math. 8 (1956), 516-523.
MR 0080132 |
Zbl 0073.27202
[11] LOOMIS L. H.:
An Introduction to Abstract Harmonic Analysis. D. Van Nostrand Company, Inc., New York, 1953.
MR 0054173 |
Zbl 0052.11701
[12] LUXEMBURG W. A. J., ZAANEN A. C :
Riesz Spaces. Vol. I. North-Holland Publishing Co., Amsterdam, 1971.
MR 0511676 |
Zbl 0231.46014
[14] SION M.:
Outer measures with values in a topological group. Proc. London Math. Soc. 19 (1969), 89-106.
MR 0239039 |
Zbl 0167.14503
[15] ŠIPOŠ J.:
Extension of partially ordered group-valued measure-like set functions. Časopis Pěst. Mat. 108 (1983), 113-121.
MR 0704058
[17] VOLAUF P.:
Extension and regularity of l-group valued measures. Math. Slovaca 27 (1977), 47-53.
MR 0476989
[19] WRIGHT J. D. M.:
Stone-algebra-valued measures and integrals. Proc. London Math. Soc. 19 (1969), 107-122.
MR 0240276 |
Zbl 0186.46504
[20] WRIGHT J. D. M.:
The measure extension problem for vector lattices. Ann. Inst. Fourier 21 (1971), 65-85.
MR 0330411 |
Zbl 0215.48101
[21] WRIGHT J. D. M.:
An algebraic characterization of vector lattices with the Borel regularity property. J. London Math. Soc. 7 (1973), 277-285.
MR 0333116 |
Zbl 0266.46036