[1] DICKER R. M.:
The substitutive law. Proc. London math. Soc., III. Seг. 13, 1963, 493-510.
MR 0153610 |
Zbl 0122.25501
[2] GERHARD J. A.:
The lattice of equational classes of idempotent semigгoups. J. Algebra 15, 1970, 195-224.
MR 0263953
[3] LÄNGER H.:
Veгallgemeinerung eines Satzes von Nöbauer und Philipp. Arch. Math. (Basel) 27, 1976, 1-2.
MR 0396375
[5] LÄNGER H.:
Diagonal-commutative quasi-trivial superassociative systems. Arch. Math. (Basel) 32, 1979, 128-133.
MR 0534922 |
Zbl 0387.08002
[6] LÄNGER H.:
Commutative quasi-trivial superassociative systems. Fund. Math. 109, 1980, 79-88.
MR 0597056 |
Zbl 0368.08005
[7] LAUSCH H., NÖBAUER, W:
Algebra of Polynomials. North-Holland Publishing Comp., Amsterdam 1973.
MR 0349544 |
Zbl 0283.12101
[8] MENGER K.:
Algebra of analysis. Notre Dame Math. Lect. 3, 1944.
MR 0011280
[9] MENGER K.:
Superassociative systems and logical functors. Math. Ann. 157, 1964, 278-295.
MR 0177928 |
Zbl 0126.03601
[10] MUNN W. D.:
Congruence-free inverse semigroups. Quart. J. Math. Oxford Ser.(2) 25, 1974, 463-484.
MR 0393304 |
Zbl 0324.20068
[11] NÖBAUER W., PHILIPP W.:
Die Einfacheit der menrdirnensionalen Functionenalgebren. Arch. Math. (Basel) 15, 1964, 1-5.
MR 0160739
[12] SKALA, H:
Irreducibly generate algebras. Fund. Math. 67, 1970, 31-37.
MR 0263727