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Math. Slovaca 34,1984, No. 1, 89—95 

C—S-MAXIMAL SUPERASSOCIATIVE 
SYSTEMS. II 

HELMUT LANGER 

Two basic concepts in mathematics are that of associativity and that of 
a function. It is well known that both these concepts are connected by the fact that 
up to isomorphism all semigroups are given by all algebras of unary functions (over 
some suitable set) together with composition. In order to generalize the concept of 
associativity to n-ary operations ( n > 2 ) K. M e n g e r introduced the concept of 
superassociativity (cf. [8], [9]). For investigations concerning superassociative 
systems (i.e. algebras with one superassociative operation) see also [1], [4], [5], [6], 
[7] (chapter 3) and [12]. In fact, superassociativity turns out to be quite a natural 
generalization of associativity since up to isomorphism all n -dimensional superas­
sociative systems (i. e. superassociative systems of the type n + 1) are given by all 
algebras of n-ary functions (over some suitable set) together with composition 
(cf. [1]). Hence studying superassociative systems is very important in order to 
generalize results on semigroups on the one hand and to get results on function 
algebras on the other hand. One of the questions in this field is that of classifying all 
superassociative systems. Since this question seems to be unsolvable in full 
generality one can try to classify certain classes of superassociative systems. 
A result in this direction was proved by H. Skala ([12]). Although the structure of 
quasi-trivial semigroups (i. e. semigroups any subset of which is a subsemigroup) 
turns out to be comparatively simple (for investigations concerning the varieties of 
idempotent semigroups cf., e. g., [2]) the class of all quasi-trivial superassociative 
systems (i .e. superassociative systems any subset of which is a subalgebra) has still 
not been classified. However, there are partial solutions of this problem (cf. [5], 
[6]). For investigations concerning the structure of quasi-trivial superassociative 
systems the concept of C—S-maximality introduced in [4] proves to be very useful 
since C—S-maximal quasi-trivial superassociative systems only consist of constants 
and selectors and thus have a trivial structure. Examples for C—S-maximal 
superassociative systems are the full function algebras over some at least three-
element set. 

In the following let n be some fixed positive integer and let k be some fixed 
cardinal. 
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Definition 1. Let (A, f) be some fixed algebra of the type n + 1. 
(A, / ) is called an n-dimensional superassociative system if 

/ ( / ( x O , X\, ..., Xn), xn + 1, •••, X2n) = 

= /(xO, f(X\, xn+1, . . . , x2n), ••-, f(Xn, xn+1, ••-, X2n)) 

for any x0, ..., xln e A . 

C(A, / ) : = {xeA \f(x, xx, ...,xn) = x for any JCI, ..., xneA} The elements of 
C(A, f) are called constants of (A, / ) . 

Si(A, f): = {xeA\f(x, xu ..., xn) = Xi for any xx, ..., xneA} for any / = 1 , 
..., n. The elements of St(A, f) are called the i-th selectors of (A, / ) . 

S(A, / ) : = S,(A, / ) u . . . u S n ( A , / ) . The elements of S(A, f) are called selectors 
of ( A , / ) . 

(A, / ) is called quasi-trivial if /(JC0, ..., xn)e {x0, ..., xn} for any JC(), ..., xneA. 
(A,f) is called C—S-maximal if the quasi-trivial subalgebra ( C ( A , / ) u 

u S ( A , / ) , / ) of (A, / ) is a maximal quasi-trivial subalgebra of (A, / ) . 
Let Ks denote the class of all n-dimensional superassociative systems (B, g) 

such that \C(B, g)\ = k. 
Let Kcs denote the class of all C—S-maximal algebras in Ks. 
In the present paper for several sub-classes L of Ks the following problem is 

completely solved: Does there exist some non-C—S-maximal n-dimensional 
superassociative system in L ? That is, to find necessary and sufficient conditions on 
(n,k) for LgzKcs. 

Theorem 2 (cf. [4]). Puf L: = {(A, f)eKs \ SX(A, / ) , . . . , Sn(A, f)±0}. Then 
LczK c s iff (n = 2<k or (n = 3 and k^l) or n>3). 

Theorem 3 (cf. [4]). Put L: = {(A, f)eKs |there exists some (xx, ..., xn)e 
eSx(A, f)x ...xSn(A, f) such that f(x, xx, ..., xn) = x for any x e A}. Then 
L cz Kcs iff (n = 2 < k or (n = 3 and k ^ 1) or n > 3). 

Theorem 4. Pur L: = {(A, f)eKs |if x,yeA and if xj=y, then there exist 
JCI,..., xn eC(A, f) such that f(x, xx, ..., xn) ± f(y, xx, ..., xn)}. Then LczK c s iff 
there is not k = 2^n. 

Proof. Case 1. k<2. 
Assume D = (D, h)eL. Suppose | D | > 1 . Then there exist a, beD such that 

a+b. Since DeL there exist ax, ..., aneC(D) such that h(a, ax, ..., an) + 
h(b, ax, ..., an). Since ax, ... an e C(D) there are also h(a, ax, ..., an), 
h(b, ax, ..., an) e C(D). Hence k = | C ( D ) | ^ 2 contradicting the assumption of 
Case 1. Therefore | D | ^ 1 whence C(D)uS(D) = D. Hence DeKcs, which 
proves L cz Kcs. 

Case 2. k = 2 and n = \. 
Assume L£KCS. Then there exists some D = (D, h)eL\Kcs. Since D £ Kcs 
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there exists some set E, C ( D ) u S ( D ) c z E c z D , such that E = (E, h) is a quasi-
-trivial subalgebra of D . Let ceE\(C(D)uS(D)). Since c£S(D) there exists 
some deD such that h(c, d)±d. Since DeL there exists some eeC(D) such 
that h(h(c,d),e)±h(d,e). Since eeC(D) there is also h(d, e)e C(D) czE, 
which together with c e £ , together with h(c, h(d, e)) = h(h(c, d), e)±h(d, e) 
and together with the quasi-triviality of E implies h(c,h(d, e)) = c. Since 
h(d, e) e C(D) there is also h(c, h(d, e)) e C(D) whence c e C(D) contradicting 
the choice of c. Hence LczK c s . 

Case 3. k = 2 and n > 1. 
Put B: = {1, 2, 3} and define g: Bn+X-*B as follows: g(xo, ..., xn): = JC0 or 1 or 

2 if jC(,e{l,2} or (x09...9xn) = (3, 1, ..., 1) or (3, 2)e {(x0, xx), ..., (x0, xn)}, 
respectively and g(JC0, ..., JC„): = 3 otherwise (JC0, ..., xneB). Then (B, g)eL\Kcs 

whence L<£Kcs. 
Case 4. k>2. 
Assume l£Kcs. Then there exists some D = (D, h)eL\Kcs. Since D£KCS 

there exists some set F, C ( D ) u S ( D ) c z F c z D , such that F = (F, h) is a quasi-triv­
ial subalgebra of D. Let e' e F \ ( C ( D ) u S ( D ) ) , let e" e C(F) and let e'"e C(D). 
Since C(D)czF we have f(e", e'", ..., e'") = e" and therefore f(e", xu ..., xn) 
= f(f(e", e'", ..., e'"), xu ..., xn) = f(e", f(e'", xu ..., xn), ..., f(e'", xu ..., xn)) 
= f(e", e'", ..., e'") = e" for any xu...,xneD whence e" eC(D). Hence 
C(F)czC(D). Since obviously C(D)czC(F) we have C(D) = C(F). Therefore 
e' eF\C(F), which together with the quasi-triviality of F and together with 
|C(F) | = |C(D) | = fc>2 implies e' e S(C(F)u{e'}, h) by a theorem of H. Skala 
([12]). Hence there exists some integer /, l^j^n, such that 
e'eS,(C(F)u{e'},h) = S , (C(D)u{e ' } , h). Since e'£ S(D) we have e'lS}(D) 
and therefore there exist du ..., dneD such that h(e', du ..., dn) ± dj. Since DeL 
there exist eu ..., en e C(D) such that h(h(e', du ..., dn), ex, ..., en) ± 
h(d,, ei, ..., en). Since eu ..., en e C(D) there are also h(du eu ..., e), ..., 
h(dn, ei, ..., en) e C(D), which together with h(e', h(du eu ..., en), ..., h(dn, eu 

..., en)) = h(h(e', du ..., dn), eu ..., en) ± h(dh eu ..., en) contradicts 
e'eS,(C(D)u{e'},h). Hence LczK c s . 

Theorem 5. Pur L: = {(A, f) g Ks \ if x, y e A and if x±y, then there exist 
xu ...,xneA such that f(x, xu ...,xn) ±f(y,xu ..., JC„)}. Then L£KCS. 

Proof. Case 1. k = 0. 
Put B: = {1, 2, 3} and define g: Bn+l-+B as follows fif(jc0, ..., jcn): = JC0 if xx = 1 

and g(xo, ..., xn): = x{ otherwise (x0, ..., xneB). Then (B,g)eL\Kcs whence 
L ^ Kcs. 

Case 2. k>0. 

Let D be some set of cardinality fc such that 1, 2<_D, put B: = D u { l , 2} and 
define g: B»+^B as follows: g(x0, ..., J C ^ ^ J C . or 2 if JC0GD or (JC0, xx) = (2, 1), 
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respectively and g(x0, ..., xn): = xi otherwise (x0, ..., xn e B). Then (B, g)eL\Kcs 

whence L<£Kcs. 

Theorem 6. Put L: = {(A, f)eKs\f(x, ..., x) = x for any xeA}. Then 
L (£ Kcs. 

Proof. It runs along the same lines as that of the foregoing theorem. 

Theorem 7. Put L: = {(A, f)eKs\S(A, f) = 0. Then L£KCS. 
Proof. Case 1. k = 0. 
Put B: = {1,2, 3} and define / : B " + , - > B as follows: g(x0, ...,xn): = l if JC, = 

... =xn = 1 and g(x0, ..., xn): = 2 otherwise (x0, ..., xn GB). Then (B, g)eL\Kcs 

whence L^K C S . 
Case 2. k>0. 
Let D be some set of cardinality k such that 1, 2 £ D , put B: = D u { l , 2 } and 

define g: Bn+X^>B as follows: g(x0, ..., xn): = x0 or 1 if x0eD or (x0, x,)e {(\, 2), 
(2,2)}, respectively and g(x0, ..., xn): = xx otherwise (x0, ..., xneB). Then 
(B, g)eL\Kcs whence L<£KCS. 

Theorem 8. Puf L: = {(A, / ) e K s \f(xih xu ..., xn) = f(x0, xnX, ..., xnn) for any 
x0e A, for any Xi, ..., xne C(A, f) and for any JT e Sym {1, ..., n}}. Then L cz Kcs 

iff n^2<k. 
Proof. Case 1. k = 0. 
The example of Case 1 of the proof of Theorem 7 shows L<£KCS. 
Case 2. n = 1 and k>0. 
The special case n = 1 of the example of Case 2 of the proof of Theorem 5 shows 

L£KCS. 
Case 3. M > 1 and k = l. 

Put B: = {1,2} and define g:Bn+x-+B as follows: g(x0, ...,xn): = 2 if x0 = 
...xn=2 and g(x0, ..., xn): = 1 otherwise (x0, ..., xneB). Then (B, g)eL\Kcs 

whence L<£KCS. 
Case 4. n>\ and k = 2. 
The example of Case 3 of the proof of Theorem 4 shows L ^ Kcs. 
Case 5. ri>l and k>2. 
Assume L<£KCS. Then there exists some D = (D, h)eL\Kcs. Since D & Kcs 

there exists some set F, C (D)uS(D)czFczD, such that F=(F, h) is a quasi-triv­
ial subalgebra of D. Let a e F \ ( C ( D ) u S ( D ) ) . Analogously to Case 4 of the proof 
of Theorem 4 one concludes that there exists some integer;, l^j^n, such that 
aeSj(C(D)v{a}, h). Let ke{l, ..., n}\{j} and let ax, ..., aneC(D) such that 
a^ak. Then h(a, au •••, an) = a^ ak = a(jk)j = f(a, ijk)l, ..., a(jk)n) contradicting 
D eL. Hence L cz Kcs. 

Theorem 9. Put L: = {(A, f)e Ks\f(x0, xu ..., xn) = f(x0, xnX, ..., x„n) for any 
x0, ..., xneA and for any jreSym {1, ..., n}}. Then LczKcs iff n^2<k. 

92 



Proof . It follows immediately from the proof above. 

Theorem 10. Fur L: = {(A, / ) e K s | (A, / ) simple}. Then LczKcs iff (n = \<k 
or k>2). 

Proof. Case 1. k = 0. 
According to [10] (Corollary 1.7) there exists some congruence-free inverse 

semigroup (B, •) such that the semilattice of all idempotents of (B, •) coincides 
with the semilattice of all rational numbers (with the natural ordering). Now define 
g: B" + 1—>B by g(x0, ..., xn): = JC0JCI(JC0, ..., jc„eB). Then (B, g)eL\Kcs whence 
L c£ Kcs. 

Case 2. k = \. 
Put B: = {\, 2, 3, 4, 5} and define g:Bn+l-*B as follows: g(x0, ..., xn): = 

JC0 + J C , - 2 or JC0 + J C - 5 if (JC0, JC,)G {2, 3} x {2, 4} or (JC0, jc,)e {4, 5} x {3, 5}, 
respectively and g(x0, ..., xn): = 1 otherwise (JC0, ..., JC„ eB). Then (B, g)eL\Kcs 

whence L<£Kcs. 

Case 3 . k> 1 and n = \. 
Assume L ^ Kcs . Then there exists some D = (D, h)eL\Kcs. Since D & Kcs we 

have C(D) cz D which together with | C(D) | = k > 1 and together with the fact that 
C(D) is an ideal of D would imply that (C(D))2u(diag D2) is a non-trivial 
congruence on D contradicting DeL. Hence LczK c s . 

Case 4. k = 2 a n d n > l . 
The example of Case 3 of the proof of Theorem 4 shows L£Kcs. 
Case 5. k>2 and n > l . 
Assume there exists some DeL and assume there exist a, beD such that a=t b 

and such that h(a, xx, ..., xn) = h(b, xu ..., xn) for any JCI, ..., JC„ eC(D). Then 
h(D,C(D), ..., C(D))czC(D) would imply that 
n{ker (h(., ax, ..., an))\au ..., an eC(D)} is a non-trivial congruence on D con­
tradicting DeL. Hence L cz {(A, / ) ^ Ks | if JC, y e A and if JCT-= y, then there exist 
jc,,...,JC,.eC(A,/) such that f(x, xx,...,xn) + f(y, xx,... xn)}. Now LgzKcs by 
Theorem 4. 

Remark . In order to see that for n, k > 1 the class L of Theorem 10 contains 
algebras (A, / ) with |A | > 1 1 consider the full n-place function algebra over some 
set of cardinality k (cf. [11]; for a short proof of the simplicity of this algebra 
see [3]). 

In the following let M be some fixed non-empty set. 

Definition 11. Fn (M): = MM". 
Let k':(Fn(M))n+l^Fn(M) be defined as follows: (k ' (/0 , /., ..., /„))(*„ ..., 

xn):=fo(fi(xi, ...,xn),...,/„(*!, ...,*„)) for any/0, ••-,/* e Fn(M) and for any JCH ..., 
jcn eM. 

Sn(M): = {f eFn(M)\f(Xl, ..., Xn) = f(xnU ..., xnn) for any JC,, ..., xn e M and for 
any jreSym {1, ..., n}}. 
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Lemma 12. 

(i) (Fn(M), k')eKs with fc = |M|. 
(ii) k'((S„(M)r+1)czS„(M). 

(iii) (Sn(M), k')eKs with k = \M\. 
(iv) C(Sn(M), k') = {(Xu ...,xn)~a\a^ M}. 
(v) If min( |M| , W ) > 1 , then S(S„(A-0, k') = 0. 

Proof. Easy. 

Theorem 13 (cf. [4]). (Fn(M), k') is C—S-maximal iff there is not \M\ = n = 2. 

Theorem 14. (Sn(M), k') is C—S-maximal iff there is not \M\ = 2^n. 

Proof. Put S: = Sn(M) = (Sn(M),k'). 

Case l . |M| = 1. 
Then |S | = 1 and hence C(S)uS(S) = S whence S is C—S-maximal. 
Case 2. ( |M| = 2 and n = 1) or | M | > 2 . 

Then S is C—S-maximal because of Theorem 4. 

Case 3. |M| = 2 and n>\. 
Let a, b eM such that -?- b and define g: Mn^>M as follows: g(xx, ...,xn): = a 

if xx = ... = xn = a and g(xx, ..., xn): = b otherwise (xu ..., xn eM). Then g£ 
C(S)uS(S) and (C(S)uS(S)u{g} , k') is a quasi-trivial subalgebra of S. Hence S 
is not C—S-maximal. 
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С—5-МАКСИМАЛЬНЫЕ СУПЕР АССОЦИАТИВНЫЕ СИСТЕМЫ. II 

НеЬгш! Еап,§ег 

Р е з ю м е 

Пусть п-положительное целое число и А=(А,^) — алгебра типа л + 1. А называется 
суперассоциативной системой, если /(/0со, :с,, ..., хп), хп+и ..., х2п) = /(х(„ /Ос,, с̂„ + 1, ..., х2п), ..., 
}(хп,хп + и..., ;с,,,)) Для всех.*,,,..., ;с2„ е А. Пусть С(А): = {хеА)\^(х, ^с,,..., хп) = х для всех .*,,..., 
^с1еА} и 5 ( А ) : = { :сеА| существует |"е{1, ..., л} такое, что [(х, х,, ..., хп) = х, для всех 
с̂,, ..,х„еА}. А называется квазитривиальной, если $(х{), ..., хп) е {х0,...,хп} для всех 

^с (, хпеА. Для некоторых классов К суперассоциативных систем найдены все пары (п, к), для 

которых все алгебры В класса К типа п + 1, для которых | С ( В ) | = к, обладают свойством, что 
С(В)и§(В) является максимальной квазитривиальной подалгеброй алгебры В. 
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