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C—S-MAXIMAL SUPERASSOCIATIVE
SYSTEMS. 1I

HELMUT LANGER

Two basic concepts in mathematics are that of associativity and that of
a function. It is well known that both these concepts are connected by the fact that
up to isomorphism all semigroups are given by all algebras of unary functions (over
some suitable set) together with composition. In order to generalize the concept of
associativity to n-ary operations (n>2) K. Menger introduced the concept of
superassociativity (cf. [8], [9]). For investigations concerning superassociative
systems (i.e. algebras with one superassociative operation) see also [1], [4], [5], [6],
[7] (chapter 3) and [12]. In fact, superassociativity turns out to be quite a natural
generalization of associativity since up to isomorphism all n-dimensional superas-
sociative systems (i. e. superassociative systems of the type n + 1) are given by all
algebras of n-ary functions (over some suitable set) together with composition
(cf. [1]). Hence studying superassociative systems is very important in order to
generalize results on semigroups on the one hand and to get results on function
algebras on the other hand. One of the questions in this field is that of classifying all
superassociative systems. Since this question seems to be unsolvable in full
generality one can try to classify certain classes of superassociative systems.
A result in this direction was proved by H. Skala ([12]). Although the structure of
quasi-trivial semigroups (i. e. semigroups any subset of which is a subsemigroup)
turns out to be comparatively simple (for investigations concerning the varieties of
idempotent semigroups cf., e. g., [2]) the class of all quasi-trivial superassociative
systems (i. €. superassociative systems any subset of which is a subalgebra) has still
not been classified. However, there are partial solutions of this problem (cf. [5],
[6]). For investigations concerning the structure of quasi-trivial superassociative
systems the concept of C—S-maximality introduced in [4] proves to be very useful
since C—S-maximal quasi-trivial superassociative systems only consist of constants
and selectors and thus have a trivial structure. Examples for C—S-maximal
superassociative systems are the full function algebras over some at least three-
element set.

In the following let n be some fixed positive integer and let k be some fixed
cardinal.
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Definition 1. Let (A, f) be some fixed algebra of the type n + 1.
(A, f) is called an n-dimensional superassociative'system if

f(f(X(), X1y eoes x,.), x,,+|’ ceey xZ,.)=
=f(x0’ f(xl» -xn+l, sy x2n), ceey f(xn, x,.+|, ceey xz,,))

for any xo, ..., X2n €A.

C(A,f):={xeA|f(x, x\, ..., x,)=x for any x,, ..., x,€ A} The elements of
C(A, f) are called constants of (A, f).

S(A,f):={xeA|f(x,xi, ..., x,)=x; for any x,,...,x, €A} for any i=1,
..., n. The elements of S;(A, f) are called the i-th selectors of (A, f).

S(A, f):=8i(A, f)u...US.(A, f). The elements of S(A, f) are called selectors
of (A, f).

(A, f) is called quasi-trivial if f(xo, ..., x,) € {Xo, ..., X, } for any x,, ..., x, € A.

(A, f) is called C—S-maximal if the quasi-trivial subalgebra (C(A, f)u
US(A,f), f) of (A, f) is a maximal quasi-trivial subalgebra of (A, f).

Let Ks denote the class of all n-dimensional superassociative systems (B, g)
such that |C(B, g)|=k.

Let Kcs denote the class of all C—S-maximal algebras in K.

In the present paper for several sub-classes L of Ks the following problem is
completely solved: Does there exist some non-C—S-maximal n-dimensional
superassociative system in L ? That is, to find necessary and sufficient conditions on
(n, k) for L c Kcs.

Theorem 2 (cf. [4]). Put L:={(A, f)eKs|Si(A,f), ..., S.(A, f)#0}. Then
LcKes iff (n=2<k or (n=3 and k=1) or n>3).

Theorem 3 (cf. [4]). Put L:={(A, f)e Ks |there exists some (x,, ..., x,) €
€Si(A, f)x...x8,(A, f) such that f(x, x,, ..., x,) = x for any xe A}. Then
LcKes iff (n=2<k or (n=3 and k=1) or n>3). ’

Theorem 4. Put L:={(A, f)eKs|if x,ye A and if x#y, then there exist
X1,..., X, € C(A, f) such that f(x, x\, ..., x.) # f(y, X1, ..., Xx.)}. Then L c Kcs iff
there is not k=2<n. '

Proof. Case 1. k<2.

Assume D = (D, h)e L. Suppose |D|>1. Then there exist a, b € D such that
a#b. Since DeL there exist a, ..., a, € C(D) such that h(a, ay, ..., a,) #
h(b, ai, ..., a,). Since ai,...a, € C(D) there are also h(a,a, ..., a.),
h(b, ai, ..., a,) € C(D). Hence k=|C(D)|=2 contradicting the assumption of
Case 1. Therefore |D|<1 whence C(D)uS(D)=D. Hence D € Kcs, which
proves L = Kcs.

Case 2. k=2 and n=1.
Assume L¢& Kcs. Then there exists some D= (D, h)e L\ K¢s. Since D ¢ Kcs
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there exists some set E, C(D)uS(D)<cE c D, such that E=(E, h) is a quasi-
-trivial subalgebra of D. Let c e E\(C(D)uS(D)). Since c ¢ S(D) there exists
some d € D such that h(c, d)+#d. Since D € L there exists scme e € C(D) such
that h(h(c, d), e) # h(d, e). Since ee C(D) there is also h(d, e)e C(D)cE,
which together with c € E, together with h(c, h(d, e))=h(h(c, d), e)+ h(d, €)
and together with the quasi-triviality of E implies h(c, h(d, e))=c. Since
h(d, e) e C(D) there is also h(c, h(d, e)) e C(D) whence c € C(D) contradicting
the choice of c¢. Hence L < Kcs.

Case 3. k=2 and n>1.

Put B:={1, 2, 3} and define g: B"*'— B as follows: g(xo, .-., X,):=x, or 1 or
2 if xo€{1,2} or (xo, ..., %) = (3,1,...,1) or (3,2)€{(x0, x1), ..., (x0, X2)},
respectively and g(xo, ..., x.): =3 otherwise (x,, ..., x, € B). Then (B, g)e L\ Kc¢s
whence L& Kes.

Case 4. k>2.

Assume [& Kes. Then there exists some D =(D, h)e L\Kcs. Since D ¢ Kcs
there exists some set F, C(D)uS(D)c F c D, such that F=(F, h) is a quasi-triv-
ial subalgebra of D. Let e’ € F\(C(D)uS(D)), let e’’ € C(F) and let e’’’ € C(D).
Since C(D)c< F we have f(e'', e, ..., e'"')=¢’’ and therefore f(e'’, xi, ..., x,)
= f(f(e", e, ...;e"" ), X1, ..., xa) = f(e"', f(€"", X1y ey Xn)s -oes f(€"", X4,y .0y Xn))
= f(e', €', ..., e"")y=¢" for any x,,..., x,€ D whence e'' € C(D). Hence
C(F)<c €(D). Since obviously C(D)c C(F) we have C(D)= C(F). Therefore
e' € F\C(F), which together with the quasi-triviality of F and together with
|C(F)| =|C(D)|=k>2 implies e’ € S(C(F)u{e’'}, h) by a theorem of H. Skala
([12]). Hence there exists some integer j, 1<j<n, such that
e' € S(C(F)u{e'}, h) = S(C(D)u{e'}, h). Since e’ ¢ S(D) we have e’ ¢ S,(D)
and therefore there exist di, ..., d, € D such that h(e’, d,, ..., d,) # d;. Since De L
there exist ey,...,e,€ C(D) such that h(h(e', d,,...,d.), e, ...,e.) +
h(d, e, ..., e,). Since e, ...,e, € C(D) there are also h(d,e,...,e), ...,
h(d., ei, ..., e.) € C(D), which together with h(e’, h(d,, e, ..., €,), ..., h(d., e,

.r @) = h(h(e', d\, ..., d.), e, ..., &) # h(d;, e, ..., e,) contradicts
e’ €S, (C(D)u{e’'}, h). Hence L = K.

Theorem 5. Put L:={(A, ) S K;|if x, ye A and if x#y, then there exist

Xi, ..., Xn € A such that f(x, x,, ..., x,) #f(y, x1, ..., x.)}. Then L& Kcs.
Proof. Case 1. k=0.

Put B: = (1, 2, 3} and define g: B"*' B as follows g(xo, ..., X,): = xo if x, =1

and g(xo, ..., x,):=x, otherwise (x,, ..., x, € B). Then (B, g)e L\Kcs whence
L& Kes.

Case 2. k>0.

Let D be some set of cardinality k such that 1,2¢D, put B:=Du(1, 2} and
define g: B"*'_, B as follows: g(xo, ..., Xa):=Xxo0r 2 if xo€ D or (xo, x,)=(2, 1),
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respectively and g(x,, ..., x,): = x, otherwise (xo, ..., x, € B). Then (B, g)€ L\ K¢
whence L& Kes.

Theorem 6. Put L:={(A, f)eKs|f(x,...,x)=x for any xeA}. Then
L& Kes.
Proof. It runs along the same lines as that of the foregoing theorem.

Theorem 7. Put L:={(A, f)e Ks|S(A, f)=0. Then L & Kcs.

Proof. Case 1. k=0.

Put B:={1, 2, 3} and define f: B""'— B as follows: g(x,, ..., x,): =1 if x, =
...=x,=1 and g(xo, ..., x,): =2 otherwise (xo, ..., x, € B). Then (B, g)€ L\ Kcs
whence L& Kcs.

Case 2. k>0.

Let D be some set of cardinality k such that 1,2 ¢ D, put B:=Du{l, 2} and
define g: B"*'— B as follows: g(xo, ..., x,): =X, or 1 if x,€ D or (x,, x:) € {(1, 2),
(2,2)}, respectively and g(xo, ..., Xx,):=x, otherwise (xo, ..., x, € B). Then
(B, g)e L\Kcs whence L& Kcs.

Theorem 8. Put L:={(A, f)e Ks |f(x0, X1, ..., Xa) = f(X0, X1, ..., Xan) fOr any
xo€ A, for any x,, ..., x, € C(A, f) and for any 1 e Sym {1, ..., n}}. Then L = Kcs
iff n=2<k. .

Proof. Case 1. k=0.

The example of Case 1 of the proof of Theorem 7 shows L& Kes.

Case 2. n=1 and k>0.

The special case n =1 of the example of Case 2 of the proof of Theorem 5 shows
L& Kes.

Case 3. n>1 and k=1.

Put B:={1, 2} and define g: B"*'— B as follows: g(x,, ..., X,):=2 if x,=
..x,=2 and g(xo, ..., x,):=1 otherwise (xo, ..., x, € B). Then (B, g)e L\ K¢
whence L& Kes. '

Case 4. n>1 and k=2.

The example of Case 3 of the proof of Theorem 4 shows L& Kcs.

Case 5. n>1 and k>2.

Assume L& K¢s. Then there exists some D =(D, h)e L\ Kes. Since D ¢ K¢
there exists some set F, C(D)uS(D)c Fc D, such that F=(F, h) is a quasi-triv-
ial subalgebra of D. Let a e F\(C(D)uS(D)). Analogously to Case 4 of the proof
of Theorem 4 one concludes that there exists some integer j, 1 <j=<n, such that
ae S (C(D)u{a}, h). Let ke{1, ..., n}\{j} and let ay, ..., a, € C(D) such that
a;#a.. Then h(a, a, ..., a,)=a;# ax = ago;=f(a, Gy, ..., agya) contradicting
DeL. Hence L c Kcs.

Theorem 9. Put L:={(A, )€ Ks|f(x0, X1, ..., X,) = f(X0, Xx1, ..., Xxn) for any
Xo, ..., X, € A and for any meSym {1, ..., n}}. Then L cK¢s iff n=2<k.
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Proof. It follows immediately from the proof above.

Theorem 10. Put L:={(A, f)e Ks|(A, f) simple}. Then L c K¢s iff (n=1<k
or k>2).

Proof. Case 1. k=0.

According to [10] (Corollary 1.7) there exists some congruence-free inverse
semigroup (B, -) such that the semilattice of all idempotents of (B, -) coincides
with the semilattice of all rational numbers (with the natural ordering). Now define
g: B""'> B by g(xo, ..., X.):=xox1(x0, ..., X, € B). Then (B, g) € L\ Kcs whence
L& Kes.

Case 2. k=1.

Put B:={1, 2, 3, 4, 5} and define g: B""'—> B as follows: g(xo, ..., X,):=
Xo+xi—2 or xo+x,—5 if (x, x1)€{2,3}x{2,4} or (xo, x,)€{4,5} %X{3,5},
respectively and g(xo, ..., x,): =1 otherwise (xo, ..., x, € B). Then (B, g) € L\ Kcs
whence L& Kcs.

Case 3. k>1 and n=1.

Assume L& Kcs. Then there exists some D = (D, h)e L\ Kcs. Since D ¢ K¢s we
have C(D) c D which together with |C(D)| =k > 1 and together with the fact that
C(D) is an ideal of D would imply that (C(D))’u(diag D?) is a non-trivial
congruence on D contradicting D € L. Hence L < Kcs.

Case 4. k=2 and n>1.

The example of Case 3 of the proof of Theorem 4 shows L& Kcs.

Case 5. k>2 and n>1.

Assume there exists some D € L and assume there exist a, b € D such that a# b
and such that h(a, x,, ..., x,) = h(b, xi, ..., x,) for any x,, ..., x, € C(D). Then
h(D, C(D), s C(D))c C(D) would imply that
n{ker (h(., ai, ..., a,))|ai, ..., a,. € C(D)} is a non-trivial congruence on D con-
tradicting D e L. Hence L < {(A, f) < K; |if x, y € A and if x# y, then there exist
Xi,...» X, € C(A, f) such that f(x, xi,...,x.) # f(y, x1,... x.)}. Now L cKcs by
Theorem 4.

Remark. In order to see that for n, k >1 the class L of Theorem 10 contains
algebras (A, f) with |A|>1 1 consider the full n-place function algebra over some
set of cardinality k (cf.[11]; for a short proof of the simplicity of this algebra
see [3]).

In the following let M be some fixed non-empty set.

Definition 11. F,(M):=MM".

Let k': (F,(M))""'— F,(M) be defined as follows: (k'(fo, fi, ..., f)(x1, ...,
x.): = fo(fi(xis ..oy Xa)s oo, fa(xy, .., x,)) for any fo, ..., f. € F,(M) and for any xi, ...,
x, e M.

S.(M):={fe F.(M)|f(x\, ..., x.) = f(Xx1, ..., Xun) fOr any x,, ..., x, € M and for
any 7t €Sym {1, ..., n}}.
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Lemma 12.

(i) (F.(M), k')e Ks with k=|M]|.
(i) k'((S.(M)" ") = S.(M).
(iii) (S.(M), k') e Ks with k= |M].
(iv) C(S.(M), k')={(x1, ..., x.) —>ala S M}.
(v) If min (M|, n)>1, then S(S.(M), k')=0.

Proof. Easy.

Theorem 13 (cf. [4]). (F,(M), k') is C—S-maximal iff there is not |M|=n=2.
Thegrem 14. (S,(M), k') is C—S-maximal iff there is not |M|=2<n.
Proof. Put S:=8,(M)=(S,(M), k').

Case 1. |[M|=1.
Then |S| =1 and hence C(S)uS(S)=S whence S is C—S-maximal.
Case 2. (|M|=2 and n=1) or |[M|>2.

Then S is C—S-maximal because of Theorem 4.

Case 3. |[M|=2 and n>1.

Let a, b € M such that # b and define g: M"— M as follows: g(x,,...,x,):=a
if x,=...=x,=a and g¢g(x,, ..., x,):=b otherwise (xi,...,x,€M). Then g¢
C(S)uS(S) and (C(S)uS(S)u{g), k') is a quasi-trivial subalgebra of S. Hence S
is not C—S-maximal.
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C—S-MAKCUMAIJIBHBIE CYITEPACCOLIMATMBHBIE CUCTEMEI. 11

Helmut Lianger

Pe3oMme
IMycTs n-nonoxurenbHoe uenoe 4yucino u A =(A,f) — anrebpa TMna n+1. A Ha3bIBaeTCs
CynepaccouMaTHBHON cUCTEMOM, el f(f(Xo, X1y wvvy Xn)y Xnsts -oor X20) = f(Xos f(X1, Xniity vvvs X2n)s -on)
f(Xus X s1, ooos X5,)) AT BCEX Xy, .., X2, € A. TIycTh C(A): = {x € A)|f(x, x\, ..., X,) = X qnsi Bcex x,, ...,
x, €A} u S(A):={xeA| cywecrByer ie{l,...,n} Takoe, 4TO0 f(xX,X{, ..., X,)=X, INA BCEX
X\ ... X,€A}. A Ha3sblBaeTC KBasuTpUBHaNbHOM, ecnu f(Xo, ..., X,) € {X,, ..., x,} Ans Bcex
Xos --» X. € A. 119 HeKOTOPBIX KJ1accoB K cynepaccoumaTUBHBIX CHCTEM HaliieHbl Bce mapsl (n, k), st

KOTOpbIX Bce anreGpnl B knacca K tvna n + 1, pnst KoTopbIxX |C(B)| =k, o6nafgaloT CBOUCTBOM, YTO
C(B)US(B) siBasieTcs MakCMMaJIbHOM KBa3UTPUBHAJIbLHON noganrebpoi anrebper B.
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