Previous |  Up |  Next

Article

References:
[1] BLAKELY B., BLAKELY G. R.: Security of number theoretic public key cryptosystems against random attack I. Cryptologia 2 (1978), 305-321. MR 0552072
[2] BLAKELY B., BLAKELY G. R.: Security of number theoretic public key cryptosystems gainst random attack II. Cryptologia 3 (1979), 29-42. MR 0552073
[3] BLAKELY B., BLAKELY G. R.: Security of number theoretic public key cryptosystems against random attack. Cryptologia 3 (1979), 105-118. MR 0552075
[4] BLAKELY G. R., BOROSH I.: Rivest-Shamir-Adelman public key cryptosystem do not always conceal messages. Comput. Math. Appl. 5 (1979), 105-118. MR 0544530
[5] ECKER A.: Finite semigroups and the RSA-cryptosystem. In: Lecture Notes in Comput. Sci. 149, Springer, New York-Berlin, 1983, pp. 353-369. MR 0707285 | Zbl 0538.94012
[6] GORDON J.: Strong primes are easy to find. In: Advances in CRYPTOLOGY, EUROCRYPT'84, Spinger Verlag, Berlin, 1985, pp. 216-223. MR 0825592 | Zbl 0596.94016
[7] NIVEN I., ZUCKERMAN H. S.: An Introduction to the Theory of Numbers. John Wiley & Sons Inc., New York, 1972. MR 0344181 | Zbl 0237.10001
[8] RIVEST R. L.: Remarks on a proposed cryptanalytic attack on the M.I.T. public-key cryptosystem. Cryptologia 2 (1978), 62-65.
[9] SIMMONS G. J., NORRIS M. J.: Preliminary comments on the M.I.T. public-key cryptosystem. Cryptologia 1 (1977), 406-414.
[10] SCHWARZ S.: The role of semigroups in the elementary theory of numbers. Math. Slovaca 31 (1981), 369-395. MR 0637966 | Zbl 0474.10002
Partner of
EuDML logo