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REMARKS CONCERNING 

RSA-CRYPTOSYSTEM EXPONENTS 

O T O K A R GROŠEK 

(Communicated by Stefan Porubský) 

ABSTRACT. Two problems associated with RSA-encryption exponents are dis­
cussed. Firstly, how many plaintexts are to be read by the Simmons and Norris 
attack for given exponent and modulus. Secondly, what is the number of expo­
nents belonging to a possible k -attack for given k and modulus. The goal is to 
find an explicit formula for the cardinality of all encryption exponents with the 
greatest period in a case when strong pseudoprimes are used. 

The RSA crypto system is a mapp ing (pe rmuta t ion) ns: Srn —> Srn , where 

Sm — {0, 1 , 2 , . . . , m — 1} is the mult ipl icat ive semigroup of integers modulo m . 

For any x (E Sm , TTS(X) = xR mod m , where G C D ( s , <j)(m)) = 1, and qb is the 

Fuler qb-function. In fact, for x = 0 and 1 the c ryptosys tem is useless. Bu t if 

0 and 1 are messages as well, we can use the s t ruc tu re of t he semigroup Sm . 

This semigroup has been described in many papers . We recall only two simple 

facts: 

F If m = pll - P22 • . . . • p™r , t hen the semigroup Sm contains exactly 2 r 

ideinpotents including 0 and 1 . 

2. To every i dempoten t e £ Sni there is a unique largest group G(c) (sub­
group of S) containing e as its identi ty element. 

S i 111 m o n s and N o r r i s [9] observed t h a t there exists a very simple 
a t tack in some cases, bu t in those noth ing was learned abou t the factorization 
of the modulus m = p-q. Thei r a t t ack was based on the fact t h a t in some cases 

7rJ'+1(.T) = 7TiS(7T,s(. . .7Ts(x)) . . .) = X ^ = X* = 7F,(x) , 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 94A60, 68P25. 
K e y w o r d s : RSA, Encryption exponent. 
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hence 7Tk(x) must have been a plaintext message. This is referred to as a 
fc-attack. 

R i v e s t in [8] formulated the practical requirements to make such situa­
tions to be very unlikely: A necessary but not sufficient condition which must 
be imposed to protect against the kind of weakness illustrated above is to re­
quire that GCD((/3(p), 4>(q)) be small and that very large primes divide o(p) 
and (j)(q), respectively. Such primes are called strong primes. More precisely: 

A prime p is called strong [6] if the following congruences are true: 

p = 1 mod r , p = t — 1 mod t, r = 1 mod j . 

where r , t, j are large random primes, respectively. 

How many plaintexts i G S will be decrypted by a fc-iteration process 7ik 

for given encryption exponent s? The answer is well known. It is the number of 
solutions of 

xs =x or xs = xs , i.e. TT^1 (x) = 7i^(x) . 

All these solutions form a semigroup Zk = Z(sk, 1,/; • q) , and their cardinalitv 
is ([l]-[6], [10]) 

\Zk\ = [l + G C D ( s f c - l , p - l ) ] [ l + GCD( . s f c - l , g - l ) ] . 

Clearly, for different fc, Zk might possess the same elements. Now the ques­
tion is: Using step-by-step fc = 1,2,3,. . . , howr many new cryptograms can we 
decrypt by fc? The answer is given by the two following lemmas. 

L E M M A 1. 

a) Zt n Zk = Zd . where d = GCD(Z, fc) ; 
b) if /1 fc . then Z\ C Zk . 

P r o o f . 

a) Let x belong to the group G(f), where / -/ 0 is one of the three non-zero 
idempotents of Sm . The equations 

x/~1=f and x
sk-l = f 

have common solutions if and only if GCD(,s/ — 1, sk — 1) = s(j - 1 for 
d = GCD(/,fc). 

For b) we have GCD(/, fc) = /. Hence Z, H Zk = Z{ , Z{ C Zk . 
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L E M M A 2 . Let Z% = {x | x = x * * , xs% ^ x /O r a l l I < k} . Tben 

a) z* = z,\ u ^ ; 

b) | ^ * | = |^A^|- [5Z | ^ ^ | - 5 ^ l ^ ^ n ^ ^ H L.(_i)-(1c)-i| Q ^ ^ l ] ^ w/,er-e 

the sums run over all d\k , d ^ k and r(k) denotes the number of 

positive divisors of k ; 

c) if k — p(* , p prim,e7 then \Z%\ = \Zk\ — \Zk\ . 

P r o o f . If x e Z%, t hen x £ Z} for any Z < fc, GCD(Z,fc) ^ 1 . Hence 

ZA* C Zk \ U -^/ • T h e opposi te inclusion is obvious . Hence Zk — 
(i,k)^i 

i^k 

Zl \\JZ,nZk = Zk \ U Zd. Now [jZdcZk and |Z*| = \Zk\ 
d\k,d^k 

Formula b) is a consequence of e lementary set theory . 

Formula c) follows from 

lU^I-

Z\ C Zp C Z pí C • • • C Zpa-1 , 

and U Zd = Zk . 
d\k,d^k p 

R e m a r k 1. Let A denote the Carmichael function defined for rn 

PI -P2" * ••• 'Pr hy 

A(m) 

Г 1 
2 a - 2 

</>(m) 

(kLCM{A(pr),A(p^),...,A(p«-)} 

if m = 1, 

if m = 2a , a > 2 , 

if m = 2,4,j/* 

wi th p an odd pr ime . 

in o ther cases . 

T h e n , using [10; Propos i t ion 6.4], t h e group of all p e r m u t a t i o n s TT(S of Sm is 

isomorphic wi th t h e group of uni t s of S,\(m) . Hence TT<S = 7r i S +^(m) , and t h e 

period \(m) cannot be replaced b y a smaller n u m b e r . Moreover, in our special 

case m = p • O, 7r,s

 m = id for all s , a n d t h e exponent \(X(m\) c a n n o t be 

replaced by a smaller one. Hence all k for which \Z%\ ^ 0 should be divisors of 

A(A(m))-
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E x a in p i e 1. Let p = 3, q = 59, s = 17. Then A(A(3 • 59)) = 28 . and 
ior k = 1,2,4,7 and 14, according to Lemmas 1 and 2, we obtain: 

7*1 z l l = lzi| = 9, 
/7* 1 Z 2І = | - * 2 І " I z i l = 0, 

V* 1 Z 4І = lz4І " lz2І = 168, 

^7* 1 

z 7 | 
= lz7І - I z l l = 0, 

lzi4! = lzi4 | - [|zi| + \Z2\ + \Z7\ - 3- jzil + IZil] - 0. 

As we can see in our simple example, although we have four "candidates'" for 
a possible k-attack, only two are actual possibilities, and clearly | Z * | -f \Z\\ — 
\Sm\ . It is known that the universal deciphering exponent t is the solution of 
17 -t = 1 mod 0(3-59), t = 6. 

Our additional observation is as follows: Given a modulus m = p • q and 
fc, enumerate the number of permutations 7rs of order k, i.e. the number of 
solutions TTJ+ 1 = ns or 7rJ = id. 

As we pointed out in Remark 1, all admissible permutations TT,S form a group 

of units of Sx(m) • The identity mapping id(x) = x now plays the role of the 

unit element 1. Let us denote it by Gx(l) • It should be emphasized that S\{ni) 

has a structure more complicated than that of Srn . Following [10] we denote the 

semigroup of solutions of 7r(?+1 = TTS by Zk = Z(k -f 1, l ,p • q. c = 1) . 

Let X(p- q) = p™1 • p2

2 -... • par . Then, from the same article, one can derive 

the formula for the cardinality of Zk (another approach is in [1] - [4]): 

\Zk\ = Si • s2 •... • sr, 

7Ì1ЄT 

Ь 
GCD(к,фІp^)) if pi is odd. or VŢ = 2 or 1. 

GCD(fc, 2) • GCD(fc, 2Ö~2) if p?' = 2" , a > 3 . 

The following illustrates the remarks made above. Now the set Z^ plays tin 
same role in Sx(jn) a s Z^ in Sm . 

E x a m p l e 2. Using the same modulus p • q as in Example 1. we can com 
pute the number of different permutations, i.e. different 7rs "having weaknt 
k". Firstly, X(p - q) = 58, Sx = GCD(fc, 1) = 1, S2 = GCD(k .28) = 1.2. 
or 28, \Zk\ = Si -S2=S2 = GCD(k, 28). 
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Now, by L e m m a 2. we ob tain: 

If k = 1, then there exists only one trivial - encryp t ion exponen t s = 1 , 

nl
s = 7TiS for all x G Sm . T h e same resul t gives our formulae \Z^\ = \Zi\ = 1. 

If k = 2 , then | Z 2 | = G C D ( 2 , 28) = 2 and |Z* | = \Z2\ - |zTi| = 1, which 
conforms wi th s = 5 7 . 

If k = 4 , then |Z4*| = \Z4\ \ \Z2\ = 4 - 2 = 2 , or concre tely s = 17 and 41 . 

If k = 7 , then |Z£ | = | Z 7 | - |.Zi | = 7 - 1 = 6 , or s G {7, 23, 25, 45, 49, 53} . 

Finally, for A: = 14 we have |Z* 4 | = \Z14 \ (ZY U Z2 U Z 7 ) | = \ZXA\ -

(\Z2\ -f | Z 7 | — |ZVJ|) = 6 , and, similarly, for k = 28 we ob ta in \Z2S\ = 12. 

In the last two cases, encrypt ion exponents belong to -{5, 9 ,13 , 33, 35, 51} or 

{ 3 , 1 1 , 1 5 , 1 9 , 2 1 , 2 7 , 3 1 , 3 7 , 3 9 , 4 3 , 4 7 , 5 5 } , respectively. Al together we have for 

/// = 3 • 59 

] T |Z£| = 0 ( A ( m ) ) = 2 8 . (1) 
k|A(A(m)) 

1̂  e m a r k 2. It is well known that (j)(a) = A(O) if and only if a = 2 ,4 , /^jv 

or 2p(l with p\ an odd pr ime. Hence, for a = \(p • q) — LCM(p — 1, q — 1) we 

have the following solutions except for commuta t iv i ty : 

If a = \(p • q) = 2 , t hen p = 2 or 3 , g = 3 ; 

if O = \(p • q) — 4 , then p = 2, 3 or 5 , q = 5 ; 

if O = \(p • q) = 2p7 , t hen p = 2, 3 or 2p? + 1 , g = 2/;f + 1. 

The case a = A(p • q) - p™ is obviously impossible. 

The formula (1) and Remark 2 na tura l ly suggest t he use of the Mobius 

inversion formula ([7]): 

T H E O R E M . Let the relation (j)(\(p • q)) = \(\(p • q)) be valid. Then the set of 

all encryption exponents s, i.e. G C D ( s , (j)(p • q)) = 1 with the greatest period 

k — \(\(p • q)) has the cardinality \Z%\ = (p(\(\(p • q))) . 

P r o o f . Recall t h a t t he sets Z£ are mutua l ly disjoint and the number of 

all possible s is 4)(\(p • q)) . Hence s u m m a n d s in 

J2 \Zt\=^(\(p-q)) 
k\X(\(p-q)) 

represent "functions" of k. On behalf of the assumpt ion (p(\(p-q)) = A(A(p-r/)) 

and by the Mobius formula 

F(n) = Y,f(k) ^> f(n) = J2^k)F(f) 
k\n k\n 
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for 
F = id, f(k) = \ŽZ\ and n = X(X(p-q)) 

we obtain the desired result 

/(n) = £> (*)• f = <*(»)• 
Â  | n 

E x a m p i e 3. In case p = 3 , g = 2 • 29 -f- 1 = 59 discussed above, we have 
<j)(\(p • q)) = \(\(p • q)) = 28 and 

l ^ ( A ( ^ ) ) l = ^(A(A(P •«))) = ^(28) = 12 . 

For all such 5 £ Z^8 = { 3 , 1 1 , . . . , 55} , TT2S(X) = x, and if x £ Z± , the exponent 
k = 28 cannot be replaced by a smaller one. 

COROLLARY 1. For the pair of primes p = 2p™ + 1 . q = 2pf + 1 Hnl/l a < ,i 
we have exactly 

l^(A(P.,))| = ^(A(A(p • <?))) = pf"2 • (pi ~ 1 ) ^ ( P I - 1) 

possible encryption exponents with the greatest '"weakness". Hence the ratio of 

the "best" encryption exponents to all possible ones is • in this case, 

and if p is a strong prime, this ratio is close to 1 . 

COROLLARY 2. Let p = 2p% + 1. q = 2of -f 1. and G C D ^ . ^ ) = 
G C D ( p i , g i - l ) = G C D ( p i - l , g i ) = 1. Then 

| z T * ( A ( p ^ 

P r o o f . In this case the relation (j)(\(p • q)) = \(\(p • q)) is not valid, bit: 
it is not difficult to derive the relation 

<p(X(p • q)) = X(X(p • q)) • GCD(p, - 1. qy- 1) . 

Again the ratio of the best encryption exponents to all possible ones in this case 

<ft(A(A(p •</))) = ^ ( L C M ( p i - 1 , ^ - 1 ) ) 

(j)(X(p • q)) Pi • qi 
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