Previous |  Up |  Next

Article

References:
[1] BIGGS N. L., MOHAR B., SHAWE-TAYLOR J.: The spectral radius of infinite graphs. Bull. London Math. Soc. 20 (1988), 116-120. MR 0924236 | Zbl 0671.05052
[2] CHAVEL I.: Eigenvalues in Riemannian Geometry. Academic Press, Orlando, 1984. MR 0768584 | Zbl 0551.53001
[3] CHEEGER J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (R. C. Gunning, ed.), Princeton Univ. Press, Princeton, 1970, pp. 195-199. MR 0402831 | Zbl 0212.44903
[4] DODZIUK J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Amer. Math. Soc. 284 (1984), 787-794. MR 0743744 | Zbl 0512.39001
[5] FREUDENTHAL H.: Über die Enden topologischer Räume and Gruppen. Math. Z. 33 (1931), 692-713. MR 1545233
[6] MOHAR B.: The spectrum of an infinite graph. Linear Algebra Appl. 48 (1982), 245-256. MR 0683222 | Zbl 0502.05040
[7] MOHAR B.: Isoperimetric inequalities, growth and the spectrum of graphs. Linear Algebra Appl. 103 (1988), 119-131. MR 0943998 | Zbl 0658.05055
[8] HILTON P. J., WYLIE S.: An Introduction to Algebraic Topology - Homology Theory. Cambridge Univ. Press, Cambridge, 1960. MR 0115161
Partner of
EuDML logo