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ISOPERIMETRIC NUMBERS AND SPECTRAL 
RADIUS OF SOME INFINITE PLANAR GRAPHS 

BOJAN MOHAR 1 ) 

ABSTRACT. Let N be a triangulation of a non-compact , open subset of the 
2-sphere, projective plane, torus, or Klein bottle, and let G be its (geometric) 
dua l graph. If every 0-simplex of N is contained in at least k 2-simplices, 
where k ^ 7, then the isoperimetric number i(G) of G is at least i(G) ^ 
3(k - 6)/(5k - 18) . If G has at most m ends then, if (k - 3)m ^ k\(S) , 
i(G) ^ 3(k - 6 ) / [ (5 - 2 x ( 5 ) / m ) k - 18] , and i(G) ^ (k - 6)/(k - 4) otherwise. 
These bounds, except the last one, are shown to be the best possible. Even better 
bounds are obtained, assuming G is cyclically t-edge connected ( 3 < t ^ k). 
Also nontrivial bounds on the spectral radius of G are derived from the above 
resu l ts . 

1. Introduction 

The isoperimetric number i(G) of a locally finite infinite graph G is equal 

«<?) = i n f M , (1.1, 
to 

where X runs over all finite non-empty subsets of V(G), and dX denotes the 
set of all edges of G which have one end in X and the other end in V(G) \ X . 
This number is a combinatorial analogue (cf. [2, 4]) of the geometric isoperimetric 
numbers which are equal to the minimum quotient between the area of a cutset 
and the volume of a part which the cutset separates. 

Considering triangulations of surfaces we shall be using the standard termi­
nology of combinatorial topology [8]. By a triangle, edge, or vertex of a triangu­
lation, we mean a 2-, 1-, or 0-simplex, respectively. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 05C99, 05C50. Secondary 52B60. 
K e y w o r d s : Isoperimetric number, Spectral radius, Infinite garph, P lanar graph, Tri­

angu lation. 
*) This paper was written in 1986 while the author was visiting the Simon Fraser Univer­

sity, Burnaby, B.C., Canada 
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Let N be a triangulation of an open subset of the 2-sphere (i.e., a planar 
surface), the projective plane, Klein bottle, or the torus, such that every vertex 
of N is contained in at least k (k ^ 7) triangles. Let L be a finite subcomplex 
of N with r(L) triangles and with qo(L) edges belonging to less than two 
triangles of L. In [4] D o d z i u k proved that, if k ^ 7, then r(L)/qo(L) ^ 26 
(only the planar case). In our paper we extend his results to obtain the best 
possible bounds of this form by showing that 

r(L) 5fc—18 2k\(S) 

q0(L) = 3(k-6) (fc - 6)ç0(£) ' 
(1.2) 

where x(S) is the Euler characteristic of the surface containing N , and this 
bound is sharp. The dual version of this result states that the cubic graph G, 
the dual of N, has the isoperimetric number at least 

(and this bound is the best possible). 

Let K be an infinite graph (or a simplicial complex). The maximal number m 
of infinite components of K\X , where X is a finite subgraph (resp. subcomplex) 
of K, is the number of ends of K [5]. Note that m may be infinite as well. For 
triangulations with at most m ends and for their dual graphs (they also have 
at most m ends), the inequalities (1.2) and (1.3) are improved in Theorem 4.2 
and 6.2, respectively. For the isoperimetric number of a cubic planar, projective 
planar, Klein bottle, or toroidal graph with all faces of length k or more, with 
duals being triangulations and with at most m ends the following bounds hold. 
If (k - 3)m ^ kx(S), then 

i(G) ^ 3(Jfc - 6) / [ (5 - 2X(S)/m)k - 18] (1.4) 

and otherwise 
i(G)^(k-Q)/(k-A). (1.5) 

Let G be a cubic graph, and let A(G) denote its adjacency matrix . Then A(G) 
naturally acts (as a matrix on column vectors) on the "vectors" (xv ; v G V(G)) 
which are sequences of complex numbers xv indexed by the vertex set of G. 
For any two vectors (xv ; v G V(G)) and (yv ; v G V(G)) their inner product 
is 

(x ,y ) := ^2 xvVv 
v£V(G) 

412 



ISOPERIMETRIC NUMBERS AND SPECTRAL RADIUS ... 

and it is well defined at least for those vectors which have the finite norm: 

| | x | | = 0 r , x ) 1 / 2 < O O 

(these vectors form the Hilbert space l2(V(G)) ) . The spectral radius p(G) of 
G is given by 

p (G)=sup ( | (A- , : r ) | ; ||*|| = l ) 

which is also the maximum of the spectrum of A(G), viewed as a linear operator 
acting on l2(V(G)) . See, e.g., [1, 6]. 

From the bounds (1.3), (1.4), and (1.5) for the isoperimetric numbers of cubic 
graphs we derive interesting lower bounds on the spectral radius of these graphs 
(Corollaries 6.3 and 6.4). 

In the last Section we remark that for cyclically i-edge connected graphs 
( 3 < t = k ), the bound (1.3) can be improved to 

i(G) = t(k - 6 ) / [(* + 2)fc - At - 6] . 

2. Class Tfc
5 of triangulations 

From now on, and up to the end of the paper, k will denote a fixed integer 
greater than or equal to 7. Let T^ be the class of all triangulated surfaces 
without boundary, which are homeomorphic to an open subset of the surface S, 
with the property that each vertex (i.e. 0-simplex) is contained in at least k 
triangles. In other words, a pure 2-dimensional simplical complex K is in T^ 
if and only if \K\ is homeomorphic to an open subset of S and for each vertex 
v e V(K) 

deg(v) = k. (2.1) 

We will confine ourselves to cases where S is either the 2-sphere, projective 
plane, torus, or the Klein bottle, i.e. x($) = 0 • Then, clearly, every triangulation 
in Tff is infinite (since k = 7). 

Given a triangulation K G T^ we shall be concerned with finding 

iso (A") = miniso (L), 

where the minimum is taken over all finite subcomplexes L of K, and iso (L) 
is the quotient of the number of the edges of L lying in less than 2 trian­
gles of L and the number of triangles of L. Usually we shall use the quantity 
I(L) := l / i s o ( L ) , seeking to maximize I(L). 

For a given finite sub complex L of K G Tfc
5 we shall use the following 

notation: 
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dL . . . the graph consisting of all edges of L belonging to less than 
two triangles of L 
the number of vertices, edges, and triangles of L, respectively 
the number of inner vertices (link is a cycle) and inner edges 
(lying in two triangles of L ) 
the number of vertices and edges of dL 
the number of components of dL 
numbers of edges in components of dL 
degrees (in L ) of vertices lying in dL 

number of components of dL having exactly i edges 
(. = 0,1,2,3, . . . ) 

Sometimes we will have to emphasize that certain of the above variables refer 
to a complex L . In such a case we shall write p(L), q(L) , r(L) , po(L), qo(L) , 
n(L), e t c with the obvious meaning. For example, I(L) = r(L)/qo(L). 

It is clear that the above introduced quantities are not independent. The 
following equalities hold: 

P, Ь r 

Pu i 

Po, o 
n 
c ь , c n • • 

du . . . dP0 •• 

d 
BІ 

Po+Pi =P 

qo + q\ = q 

(2.2) 

(2.3) 

X^ CІ = yo 
i=ì 

Po 

^2di = d 
i=l 

]jP ІBІ = a0 

i 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

We finish this section by an obvious result characterizing finite sub complexes 
of triangulations from Tfc

5 . 

PROPOSITION 2.1 . Let L be a finite pure 2-dimensional complex which is 
homeomorphic to a subset of the surface S. Then L is a subcomplex of a trian-
gulation from Tjf if and only if each vertex of L with the link in L isomorphic 
to a cycle Ct is of degree £=k. • 

3. Restrictions 

Our aim is to determine the maximum of I(L) = r(L)/qo(L) taken over all 
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finite complexes L which are subcomplexes of triangulations from Tjf . We shall 
confine ourselves to a subset of such complexes L by showing that, given L a 
sub complex of K, there is a complex V related to L (which is a sub complex 
of some K' G T^ , and K' is "close" to K) such that 

(a) V satisfies several restrictions stated in this section, 
(b) qo(L') ^ ma,x{q0(L), k} , and 
(c) I{L')^I{L). 

To show that V is a subcomplex of some K' we shall use Proposition 2.1, 
usually without mentioning it. 

R E S T R I C T I O N 1. L is pure. 

P r o o f . Let V be L minus all edges and vertices which are not contained 
in any triangle of L. • 

RESTRICTION 2. L is strongly connected, i.e. any two triangles A, B are 
connected by a sequence of triangles starting with A and ending with B such 
that any two consecutive triangles share a common edge. 

P r o o f . For V take the strongly connected component of L with largest 
I{V). D 

RESTRICTION 3 . The boundary dL of L consist of disjoint cycles. 

P r o o f . If L has vertices with the link consisting of more than one compo­
nent, construct V as follows. For each such vertex v take the strongly connected 
components of star (f, L) in the same cyclic order as they follow each other em­
bedded in the surface. Between any two consecutive strong components with the 
exception of one (chosen arbitrarily) add two triangles as shown in Figure 1. It 
is easy verified that the obtained complex V has the required properties. • 

Figure 1. 
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RESTRICTION 4. I(L) = 1. 

P r o o f . If I(L) < 1, take L' to consist of a vertex of degree k and k 
triangles containing this vertex. Then we get I(L') = 1. D 

RESTRICTION 5. L has no vertices of degree two. 

P r o o f . If u is a vertex of degree 2, it lies in dL. Let L\ be L minus the 
triangle containing v. Since I(L) ^ 1 by Restriction 4, 

I(L1) = (r(L)-l)/(qo(L)-l)^I(L). 

By repeating this for vertices of degree two in L\, and so on, we must stop 
sooner or later with a nonempty complex V without vertices of degree two. D 

RESTRICTION 6. If L is not equal to any of the two complexes of Figure 2 , 
then for every cycle C on dL of length c, the sum of degrees (in L) of vertices 
of C is at least 3c + 3 . 

P r o o f . Triangulate the cycles of dL \ C to get a triangulation T of a 
surface with C as the boundary. (Note that T is not necessarily a subcomplex 
of some K in T£.) It is clear that I(T) —^ I(L). Degrees on C are the same in 
L and in T. Hence it suffices to prove that their sum (in T ) is at least 3c + 3 . 
Since I(T) ^ 1, it can be shown that T must contain an inner vertex. By using 
this and Restriction 5, it can be shown that the only two possibilities for T with 
the sum of degrees ^ 3c + 2 are the complexes represented in Figure 2. The 
details are left to the reader. D 

(») (b) 

Figure 2. 
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RESTRICTION 7. Each cycle C in dL bounds on S. 

P r o o f . By "induction" on x($) • If S is the 2-sphere, i.e., x(S) = 2 , 
then the restriction is clear. Suppose now that 0 _ x(S) < 2 and that we have 
proved all the results of this paper for surfaces S' with x (^ ' ) > x(&) • Suppose, 
moreover, that dL contains a cycle C which is not bounding. Then, since dL 
is bounding, L is homeomorphic to a subset of a surface S' with x(-^') > x(S), 
and by Proposition 2.1 there is JV' G T^ containing L as a subcomplex. By 
"induction hypothesis", L satisfies the main bounds of Theorems 4.1 and 4.2 
for the surface S'. Consequently, it fits also the larger upper bounds for S. • 

RESTRICTION 8. The number n of components of dL is less or equal to the 
number of ends of K . 

P r o o f . Let C be a cycle of dL. If C bounds a finite subcomplex of K, 
then add the triangles of this subcomplex to L. By doing this for all cycles of 
dL we obtain V in which there is at least one end bounded by every boundary 
cycle. • 

To conclude, we state the main result of this section more explicitly. 

THEOREM 3.1 . Let K G Tjf and let L be a finite subcomplex of L. Then 
there is a triangulation K' G T^ and a finite subcomplex V of K1 such that: 

(a) V has properties determined by Restrictions 1, 2, 3, 4, 5, 7 and 8. 
(b) If L is none of the examples of Figure 2, then V also fits the Re­

striction 6. 
(c) qo(L') = max{g0(£), k} . 
(d) I(L') = I(L). 
(e) The number of ends of K' is (less or) equal to the number of ends of 

K. 

4. The main bound 

Throughout this section we assume 5, K and L are given and they satisfy 
the restrictions stated for V in Theorem 3.1. The restrictions 1-6 enable us to 
derive some additional equalities and inequalities. By Restriction 1, every edge 
of dL is contained in one triangle of L, and every inner edge is contained in 
two triangles, thus 

3r = 2qi+qo. (4.1) 

By Restriction 3 we have 

Po = qo (4.2) 
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and by Restrictions 2 and 7, the Euler formula is 

p-q + r = X(S)-n. (4.3) 

By using (2.3) and (4.1) we get from (4.3) equality 2p — q$ — r = 2X(S) — 2n, 
and then by (2.6) and (2.7): 

2 p - r - ^ ( i - 2 ) B i = 2 x ( 5 ) . (4.4) 
t 

Let us count the sum of degrees of vertices of L. Since the inner vertices have 
the degree at least k, it is clear that: 

Y deg (v) = kpi+Ydi = kPi+d-
vEV(G) i 

But by counting the degrees, each edge is counted twice, thus 2q _ kp\ + d. 
After eliminating q and p\ by using (2.2), (2.3), (4.2), and (4.1), we have: 

kp-3r-(k + l)qQ + d _ 0. (4.5) 

From this inequality and (4.4) we eliminate p , obtaining: 

(k - 6)r - 2(k + l)qQ +2d+k ] £ ( i - 2)B{ _ -2kX(S). (4.6) 

By Restriction 6, with the only exception of complexes of Figure 2, we may 
assume that the sum of degrees on a boundary i -gon of L is at least 3i + 3 . So 
d = ^2 dj _ _](3i + 3)Bi, and we have: 

-d + 3 5^(i + l)B,- _ 0 . 
i 

Now (4.6) and the above inequality imply that 

(Jb - 6)r - 2(k + l)q0 + Y(ki ~ 2k + Qi + 6)Bi = ~2kx(S) • (4.7) 
i 

By adding the equation (2.6) multiplied by \(k + 24), the last inequality trans­
forms to 

3(* - 6)r - (5k - 18)go + (2k - 6) ^ ( t - 3)5,- _ -6kX(S). (4.8) 

i_3 

By observing that (2k — 6)(i — 3)Bi _ 0 for each i _ 3 , we derive: 

. 5 k - 1 8 2kX(5) 
r ^ 3 ^ t - ) * » - - * 3 6 - ( 4 - 9 ) 

We recall once more that (4.9) holds for all complexes satisfying our restrictions, 
except possibly for the complexes of Figure 2. But those clearly fit in the equality 
(4.9). Our main theorem follows: 
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THEOREM 4 . 1 . Let K G Tf (fc _ 7) and let L be a finite subcomplex of K. 
Then 

J ( . L ) < - 5 _ _ 1 2 f c*(5> . (4.10) 
K , = 3(k-6) (k-6)q0(L) K } 

This bound is sharp. 

P r o o f . Let _ ' be a complex obtained from L by Theorem 3.1. We have 
shown by (4.9) that / ( _ ' ) ^ (5k - 18)/(3(fc - 6)) - 2kX(S)/[(k - 6)q0(L')] . 
Since I(L) ^ L(Lf), the same bound holds for _ . Since qo(L') ^ 3 , this bound 
is greater or equal to 1. Hence, the Restriction 4 may be assumed to hold already 
for L. 

Note that in this case the condition (c) of Theorem 3.1 reduces to 

qo(L')Sqo(L), 
and (4.10) follows from the above. 

Sharpness of (4.10) will be proved in the next section by exhibiting infinitely 
many examples for which equality holds. • 

Finally we shall consider a related problem. Let Tj?m be the class of all 

triangulations from T^ which have at most m ends. Note that the reduction 

K —> Kf of Theorem 3.1 preserves the classes Tjfm , i.e. if K G T^m , then also 

K1 G Tjfm . The problem of finding the maximal / ( _ ) in the class T^m can 

have a lower maximal value than the unrestricted problem in T^ . Note that, 
by Restriction 8, we have another inequality: 

n^m. (4.11) 

From inequality (4.8), and using (2.6) and (2.7) we obtain: 

(k - G)r -(k- 4)g0 _ -2Jkx(5) + 2(k - 3)n. (4.12) 

If the right-hand side of (4.12) is non-negative, i.e. (k — 3)n ^ kX(S), then, we 
get by using </o _ 3n and n ^m: 

(k - 6) / (_) ^ k - 4 + (-2kX(S) + 2(k - 3)n)/q0 

_ k _ 4 _ _M_1 + 2(fc - 3)/3 (4.13) 
on 

^ [ 5 * - 1 8 - 2 i b x ( 5 ) / m ] / 3 . 

Otherwise, if (k — 3)n < kX(S), we get from (4.12): 

(Jfc - 6)I(L) ^k-A- 2/qo . (4.14) 

Note that this bound was obtained under the assumption that L satisfies Re­
strictions 1-8, and in particular that I(L) ^ 1 and that _ does not equal 
either of the exceptions from Figure 2. 
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THEOREM 4 .2 . Let K E Tfc
5
m and let L be a finite subcomplex of Li . Then 

( 5 - - - £ - ) * - 1 8 
I(L)^ 

and otherwise 

3(k - 6) 
if (k - 3)m ^ Å:x(s) , 

I(L)й 
k-A 

k - 6 (k - 6)qo(L) 

P r o o f . Note that the first bound is always greater than the second and 
this bound is > £—-. Thus, this result follows from (4.13). To get the second 
bound, proceed as follows: If L(L) ^ 1 or L is one of the exceptions in Figure 2, 
then L(L) ^ (k — l)/(k — 2) . But this is less than the bound in the theorem. 
Otherwise, (4.14) applies. • 

N o t e . The first bound of Theorem 4.2 is sharp in many cases (see Sec­
tion 5), while the second bound is not. 

5. Sharpness of our Bounds 

The bound (4.10) of Theorem 4.1 is sharp in the sense that there exist ex­
amples which attain this bound. For k — 7, 8, 9, 10, 11, 12, 13 and 15 we shall 
exhibit infinitely many planar examples for which equality in (4.10) holds. Thus 
also the bound L(L) < (bk — 18)/(3fc — 18) is the best possible for sub complexes 
L of triangulations from Tjf . 

Figure 3. 
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We start constructing complex L by'taking a basic piece. For k = 7, 9, 11, 13, 
15, the basic piece is represented in Figure 3, and for k = 8,10,12 it is shown 
in Figure 4. 

Figure 4 

Each basic piece has some marked triangles which we call distinguished tri­
angles. For several values of k the distinguished triangles are as follows: 

fc= 7 
k = 9 
fc = l l 
Jfc = 13 
ib = 15 
k = 8 
Jfc = 10 
ifc = 12 

triangles marked 1 (in Figure 3) 
triangles marked 1 or 2 
triangles marked 1,2 or 3 
triangles marked 1,2,3, or 4 
all triangles 
triangles marked 1 or 2 (in Figure 4) 
triangles marked 1,2 or 3 
all triangles 

Figure 5. 
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In any one of the distinguished triangles we may add another basic piece 
together with six other triangles in between as shown in Figure 5 (always in such 
a way that the outside triangle of the basic piece which is added in the middle, 
is distinguished). Thus we obtain a larger picture with several new distinguished 
triangles instead of the one which was " filled up". We may continue this process 
in an arbitrary way and as long as we want. 

Finally we define L as follows. At the beginning, in the starting basic piece, 
L consists of those triangles which are not distinguished. By each addition of a 
basic piece into a distinguished triangle we add to L the six new triangles and 
the non-distinguished triangles of the added basic piece. After we stop adding 
basic pieces we fill up each of the remaining distinguished triangles by adding 
an octahedron in it, i.e. adding a triangle instead of the basic piece, as shown in 
Figure 5. For each such filling we add to L the six triangles of the octahedron, 
with the exception of the middle one. 

Note that, by Proposition 2.1, L is a subcomplex of a triangulation in 
Tfc

sp e r e , and that the boundary dL of L consists of disjoint triangles, each 
having the sum of degrees at its boundary equal to 12. Consequently, it is easy 
to see that for L , the inequalities (4.5) and (4.7) are, in fact, equalities, and so 
is (4.8). Since B{ = 0 for i = 4 , (4.8) is equivalent to (4.10). By verifying that 
L satisfies restrictions 1-6, we see that this is an example which attains the 
bound (4.10). 

The same examples also show that the bound of Theorem 4.2 is sharp, at 
least for values of k treated above and for those numbers m of ends which can 
be obtained as the numbers of distinguished triangles (i.e., for k = 1 every even 
m — 4 is attainable). 

6. Bounds on isoperimetric numbers 

Let Cj! and Ck m (k — 7, m ^ 1) be the classes of cubic graphs which arise 

as duals of triangulations in Tk and Tk m , respectively. It is easy to see that 

Theorems 4.1 and 4.2 imply the following results: 

THEOREM 6 .1 . Let G £ Cf (k — 7). Then its isoperimetric number i(G) is 
bounded by: 

and this bound is the best possible. • 

T H E O R E M 6.2. Let G e Cf>m . Then 

(5 -2x (5 ) /Vn)k -18 ' 
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and 

i(G) > , otherwise. 
k — 4 

It is worth mentioning that to bound the isoperimetric number of a graph, 
many times inequalities involving the spectrum of the graph are used (e.g. 
C h e e g e r -like [3] inequality [1, 7]). At this place we shall undertake the con­
verse way. Using inequalities of Theorems 6.1 and 6.2 we shall derive bounds for 
the spectral radii of graphs in Cf and Cf m . 

COROLLARY 6 .3 . Let G G Cf (k ^ 7) . Then its spectral radius p(G) is at 
most 

^ G )^5JbTi8V6(*-4)(*-3) . 

P r o o f . It is shown in [7] that p2(G) ^ 9 - i2(G). The inequality of the 
corollary then follows from Theorem 6.1. • 

In the same way we get from Theorem 6.2 the following corollary: 

C O R O L L A R Y 6.4. Let G e Cf m . Then 

siM*-4-^)^-3-^*) 
"(G) S ~ (,-agt)t_n if (k ~3)m i kx(S)• 

2 
p(G) ^ •: -y/(k-3)(2k-9) otherwise. 

k — 4 

7. Cyclically t - edge connec ted g r a p h s 

Recall that a graph G is cyclically t-edge connected if the omission of any 
t or fewer edges results in a graph having at most one component that contains 
cycles. 

Let N G Tjf, L be a finite subcomplex of N, and G G Cf the dual graph 
of N . If G is cyclically t -edge connected, then we have, besides the restrictions 
of Section 3, also the following one: 
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Every boundary cycle of L is of length at least t. 

Since, if C is a cycle in dL of length t — 1 or less, the removal of the edges 
dual to C will disconnect G (by Restriction 7). The dual graph of L contains 
a cycle since I(L) is assumed to be at least 1. By the proof of Restriction 8, 
C bounds an end of N, hence also the dual of this part contains cycles, a 
contradiction with the cyclic t -edge connectivity of G. 

By the above restriction, J3, = 0 for i < t. Thus, if we multiply (2.6) by 
(kt — 2k + 6t + 6)/t and subtract it from inequality (4.7), we get: 

t(k-6)r- [k(t + 2)-4t-6]q0 + (2k-6)J2(i-t)Bi = -2fc*x(S). (7.1) 
*^ 

Now, since (2k — 6)(i — t)Bi ^ 0 for each i, an improved bound for i(G) follows: 

THEOREM 7.1. If G E Cf is cyclically t-edge connected, then 

•w-(i+$£Sb- (7-2) 

• 
We remark that the above lower bound is increasing as a function of t, and 

the highest one is obtained for t = k (no graph from C^ \ Cjf+j is cyclically 
(k + l)-edge connected). 

The corresponding improved bounds for cyclically t-edge connected graphs 
from Cjf m can be derived from (7.1) in the same way as Theorem 4.2 is derived 
from (4.8). 
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