Previous |  Up |  Next

Article

References:
[1] J. P. Aubin, A. Cellina: Differential Inclusions. Springer Verlag, Berlin, 1984. MR 0755330
[2] M. Bosák, M. Kučera: A bifurcation of periodic solutions to differential inequalities in $R^3$. Czechoslovak Math. J. 42 (117) (1992), 339–363. MR 1179505
[3] J. Eisner: Branching of periodic solutions to differential inequalities. Thesis, Charles University, 1991. (Czech)
[4] M. Kučera: Bifurcation points of variational inequalities. Czechoslovak Math. J. 32 (107) (1982), 208–226. MR 0654057
[5] M. Kučera: A global continuation theorem for obtaining eigenvalues and bifurcation points. Czechoslovak Math. J. 38 (133) (1988), 120–137. MR 0925946
[6] M. Kučera: Bifurcation of periodic solutions to ordinary differential inequalities. Colloquia Math. Soc. J. Bolyai 62. Differential Equations, Budapest, 1991, pp. 227–255. MR 1468758
[7] M. Kučera: Stability of bifurcating periodic solutions of differential inequalities in $R^3$. Berlin, 1994, Preprint No. 89, Institut für Angewandte Analysis und Stochastik. MR 1666194
[8] J. Kurzweil: Ordinary Differential Equations. Studies in Applied Mechanics 13, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1986. MR 0929466 | Zbl 0667.34002
[9] J. L. Lions: Quelques méthodes de resolution de problemes aux limites non linéaires. Paris, 1969. MR 0259693
[10] J. E. Marsden, M. Mc Cracken: The Hopf Bifurcation Theorem and Applications. Springer, Berlin, 1976. MR 0494309
[11] L. Nirenberg: Topics in Nonlinear Functional Analysis. New York, 1974. MR 0488102 | Zbl 0286.47037
[12] M. Pazy: Semi-groups of nonlinear contractions in Hilbert space. Problems in Nonlinear Analysis (C.I.M.E., IV Ciclo, Varenna 1970), Edizioni Cremonese, Rome, 1971, pp. 343–430. MR 0291877 | Zbl 0228.47038
[13] P. H. Rabinowitz: Some global results for non-linear eigenvalue problems. J. Functional Analysis 7 (1971), 487–513. DOI 10.1016/0022-1236(71)90030-9 | MR 0301587
[14] E. H. Zarantonello: Projections on convex sets in Hilbert space and spectral theory. Contributions to Nonlinear Functional Analysis, E. H. Zarantonello (ed.), Academic Press, New York, 1971. Zbl 0281.47043
Partner of
EuDML logo