[1] J. P. Aubin, A. Cellina:
Differential Inclusions. Springer Verlag, Berlin, 1984.
MR 0755330
[2] M. Bosák, M. Kučera:
A bifurcation of periodic solutions to differential inequalities in $R^3$. Czechoslovak Math. J. 42 (117) (1992), 339–363.
MR 1179505
[3] J. Eisner: Branching of periodic solutions to differential inequalities. Thesis, Charles University, 1991. (Czech)
[4] M. Kučera:
Bifurcation points of variational inequalities. Czechoslovak Math. J. 32 (107) (1982), 208–226.
MR 0654057
[5] M. Kučera:
A global continuation theorem for obtaining eigenvalues and bifurcation points. Czechoslovak Math. J. 38 (133) (1988), 120–137.
MR 0925946
[6] M. Kučera:
Bifurcation of periodic solutions to ordinary differential inequalities. Colloquia Math. Soc. J. Bolyai 62. Differential Equations, Budapest, 1991, pp. 227–255.
MR 1468758
[7] M. Kučera:
Stability of bifurcating periodic solutions of differential inequalities in $R^3$. Berlin, 1994, Preprint No. 89, Institut für Angewandte Analysis und Stochastik.
MR 1666194
[8] J. Kurzweil:
Ordinary Differential Equations. Studies in Applied Mechanics 13, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1986.
MR 0929466 |
Zbl 0667.34002
[9] J. L. Lions:
Quelques méthodes de resolution de problemes aux limites non linéaires. Paris, 1969.
MR 0259693
[10] J. E. Marsden, M. Mc Cracken:
The Hopf Bifurcation Theorem and Applications. Springer, Berlin, 1976.
MR 0494309
[12] M. Pazy:
Semi-groups of nonlinear contractions in Hilbert space. Problems in Nonlinear Analysis (C.I.M.E., IV Ciclo, Varenna 1970), Edizioni Cremonese, Rome, 1971, pp. 343–430.
MR 0291877 |
Zbl 0228.47038
[14] E. H. Zarantonello:
Projections on convex sets in Hilbert space and spectral theory. Contributions to Nonlinear Functional Analysis, E. H. Zarantonello (ed.), Academic Press, New York, 1971.
Zbl 0281.47043