Previous |  Up |  Next

Article

References:
[1] M. Behzad, G. Chartrand and L. Lesniak-Foster: Graphs & Digraphs. Prindle, Weber & Schmidt, Boston, 1979. MR 0525578
[2] A. D. Glukhov: On chordal-critical graphs (in Russian). Some Topological and Combinatorial Properties of Graphs, Preprint 80.8., IM AN USSR, Kiev, 1980, pp. 24–27. MR 0583198
[3] N. P. Homenko and A. D. Glukhov: One-component 2-cell embeddings and the maximum genus of a graph. Some Topological and Combinatorial Properties of Graphs, Preprint 80.8., IM AN USSR, Kiev, 1980, pp. 5–23. (Russian) MR 0583197
[4] N. P. Homenko, N. A. Ostroverkhy and V. A. Kusmenko: The maximum genus of graphs (in Ukrainian, English summary). $\phi $-Transformations of Graphs (N. P. Homenko, ed.), IM AN USSR, Kiev, 1973, pp. 180–210. MR 0422065
[5] M. Jungerman: A characterization of upper embeddable graphs. Trans. Amer. Math. Soc. 241 (1978), 401–406. MR 0492309 | Zbl 0379.05025
[6] L. Nebeský: A new characterization of the maximum genus of a graph. Czechoslovak Math. J. 31(106) (1981), 604–613. MR 0631605
[7] L. Nebeský: $N_2$-locally connected graphs and their upper embeddability. Czechoslovak Math. J. 41(116) (1991), 731–735. MR 1134962
[8] L. Nebeský: Local properties and upper embeddability of connected graphs. Czechoslovak Math. J. 43(118) (1993) (to appear), 241–248. MR 1211746
[9] R. Nedela and M. Škoviera: On graphs embeddable with short faces. Topics in Combinatorics and Graph Theory, R. Bodendiek, R. Henn (eds.), Physica-Verlag, Heidelberg, 1990, pp. 519–529. MR 1100074
[10] A. T. White: Graphs, Groups, and Surfaces. Revised Edition. North-Holland, Amsterdam, 1984. MR 0780555
[11] N. H. Xuong: How to determine the maximum genus of a graph. J. Combinatorial Theory Ser. B 26 (1976), 217–225. DOI 10.1016/0095-8956(79)90058-3 | MR 0532589
Partner of
EuDML logo