[1] C.-A. Faure, J. Mawhin:
The Hake’s property for some integrals over multidimensional intervals. Preprint (1994).
MR 1348084
[2] J. Jarník, J. Kurzweil:
Pfeffer integrability does not imply $\text{M}_{1}$-integrability. Czech. Math. J. 44 (1994), 47–56.
MR 1257935
[3] J. Jarník, J. Kurzweil, S. Schwabik:
On Mawhin’s approach to multiple nonabsolutely convergent integral. Casopis Pest. Mat. 108 (1983), 356–380.
MR 0727536
[4] W. B. Jurkat, R. W. Knizia:
A characterization of multi-dimensional Perron integrals and the fundamental theorem. Can. J. Math. 43 (1991), 526–539.
DOI 10.4153/CJM-1991-032-8 |
MR 1118008
[6] J. Kurzweil, J. Jarník:
Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exchange 17 (1991–92), 110–139.
MR 1147361
[7] J. Kurzweil, J. Jarník:
Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals. Results Math. 21 (1992), 138–151.
DOI 10.1007/BF03323075 |
MR 1146639
[8] J. Kurzweil, J. Jarník:
Equivalent definitions of regular generalized Perron integral. Czech. Math. J. 42 (1992), 365–378.
MR 1179506
[9] J. Mawhin:
Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields. Czech. Math. J. 31 (1981), 614–632.
MR 0631606 |
Zbl 0562.26004
[11] D. J. F. Nonnenmacher:
Every $\text{M}_{1}$-integrable function is Pfeffer integrable. Czech. Math. J. 43 (1993), 327–330.
MR 1211754
[12] D. J. F. Nonnenmacher:
A descriptive, additive modification of Mawhin’s integral and the divergence theorem with singularities. Preprint (1993).
MR 1270304
[15] S. Saks:
Theory of the Integral. Hafner Publishing Company, 1937.
Zbl 0017.30004