Previous |  Up |  Next

Article

References:
[1] C. J. Amick: Some remarks on Rellich’s theorem and the Poincaré inequality. J. London Math. Soc. (2) 18 (1978), 81–93. DOI 10.1112/jlms/s2-18.1.81 | MR 0502660 | Zbl 0391.46029
[2] C. Bennett and R. Sharpley: Interpolation of Operators. Academic Press, Inc., Boston-San Diego-New York-Berkeley-London-Sydney-Tokyo-Toronto, 1988. MR 0928802
[3] R. C. Brown and D. B. Hinton: Weighted interpolation inequalities and embeddings in  $\mathbb{R}^N$. Canad. J. Math. 42 (1990), 959–980. DOI 10.4153/CJM-1990-051-8 | MR 1099452
[4] R. C. Brown and D. B. Hinton: A weighted Hardy’s inequality and nonoscillatory differential equations. Quaestiones Math. 15 (1992), 197–212. DOI 10.1080/16073606.1992.9631684 | MR 1185887
[5] R. C. Brown and D. B. Hinton: An interpolation inequality and applications, Inequalities and Applications. R. P. Agarwal (ed.), World Scientific, Singapore-New Jersey-London-Hong Kong, 1994, pp. 87–101. MR 1299547
[6] R. C. Brown and B. Opic: Embeddings of weighted Sobolev spaces into spaces of continuous functions. Proc. Roy. Soc. Lond. Ser. A 439 (1992), 279–296. DOI 10.1098/rspa.1992.0150 | MR 1193004
[7] D. E. Edmunds and W. D. Evans: Spectral Theory and Differential Operators. Oxford University Press, Oxford, UK, 1987. MR 0929030
[8] D. E. Edmunds and R. Hurri: Weighted Poincaré inequalities and Minkowski content. Proc. Roy. Soc. Edinburgh (to appear).
[9] D. E. Edmunds and B. Opic: Weighted Poincaré and Friedrichs inequalities. J. London Math. Soc. (2) 47 (1993), 79–96. DOI 10.1112/jlms/s2-47.1.79 | MR 1200980
[10] D. E. Edmunds, B. Opic and L. Pick: Poincaré and Friedrichs inequalities in abstract Sobolev spaces. Math. Proc. Cambridge Philos. Soc. 113 (1993), 355–379. DOI 10.1017/S0305004100076027 | MR 1198418
[11] D. E. Edmunds, B. Opic and J. Rákosník: Poincaré and Friedrichs inequalities in abstract Sobolev spaces II. Math. Proc. Cambridge Philos. Soc. 115 (1994), 159–173. DOI 10.1017/S0305004100071991 | MR 1253290
[12] D. B. Hinton and R. Lewis: Singular differential operators with spectra discrete and bounded below. Proc. Roy. Soc. Edinburgh 84A (1979), 117–134. MR 0549875
[13] A. Kufner, O. John and S. Fučík: Function Spaces. Academia, Prague and Noordhoff International Publishing, 1977. MR 0482102
[14] W. A. J. Luxemburg: Banach Function Spaces. Thesis, Technische Hogeschool te Delft, 1955. MR 0072440 | Zbl 0068.09204
[15] O. Martio and M. Vuorinen: Whitney cubes, $p$-capacity, and Minkowski content. Exposition. Math. 5 (1987), 17–40. MR 0880256
[16] M. A. Naimark: Linear Differential Operators, Part II. Frederick Ungar, New York, 1968. MR 0262880 | Zbl 0227.34020
[17] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague and Masson, Paris, 1967. MR 0227584
[18] B. Opic and A. Kufner: Hardy-type Inequalities. Longman Scientific and Technical, Harlow, Essex, UK, 1990. MR 1069756
[19] E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970. MR 0290095 | Zbl 0207.13501
[20] W. Ziemer: Weakly Differentiable Functions. Springer-Verlag, Berlin-New York, 1989. MR 1014685 | Zbl 0692.46022
Partner of
EuDML logo