[2] C. Bennett and R. Sharpley:
Interpolation of Operators. Academic Press, Inc., Boston-San Diego-New York-Berkeley-London-Sydney-Tokyo-Toronto, 1988.
MR 0928802
[5] R. C. Brown and D. B. Hinton:
An interpolation inequality and applications, Inequalities and Applications. R. P. Agarwal (ed.), World Scientific, Singapore-New Jersey-London-Hong Kong, 1994, pp. 87–101.
MR 1299547
[6] R. C. Brown and B. Opic:
Embeddings of weighted Sobolev spaces into spaces of continuous functions. Proc. Roy. Soc. Lond. Ser. A 439 (1992), 279–296.
DOI 10.1098/rspa.1992.0150 |
MR 1193004
[7] D. E. Edmunds and W. D. Evans:
Spectral Theory and Differential Operators. Oxford University Press, Oxford, UK, 1987.
MR 0929030
[8] D. E. Edmunds and R. Hurri: Weighted Poincaré inequalities and Minkowski content. Proc. Roy. Soc. Edinburgh (to appear).
[10] D. E. Edmunds, B. Opic and L. Pick:
Poincaré and Friedrichs inequalities in abstract Sobolev spaces. Math. Proc. Cambridge Philos. Soc. 113 (1993), 355–379.
DOI 10.1017/S0305004100076027 |
MR 1198418
[11] D. E. Edmunds, B. Opic and J. Rákosník:
Poincaré and Friedrichs inequalities in abstract Sobolev spaces II. Math. Proc. Cambridge Philos. Soc. 115 (1994), 159–173.
DOI 10.1017/S0305004100071991 |
MR 1253290
[12] D. B. Hinton and R. Lewis:
Singular differential operators with spectra discrete and bounded below. Proc. Roy. Soc. Edinburgh 84A (1979), 117–134.
MR 0549875
[13] A. Kufner, O. John and S. Fučík:
Function Spaces. Academia, Prague and Noordhoff International Publishing, 1977.
MR 0482102
[14] W. A. J. Luxemburg:
Banach Function Spaces. Thesis, Technische Hogeschool te Delft, 1955.
MR 0072440 |
Zbl 0068.09204
[15] O. Martio and M. Vuorinen:
Whitney cubes, $p$-capacity, and Minkowski content. Exposition. Math. 5 (1987), 17–40.
MR 0880256
[16] M. A. Naimark:
Linear Differential Operators, Part II. Frederick Ungar, New York, 1968.
MR 0262880 |
Zbl 0227.34020
[17] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague and Masson, Paris, 1967.
MR 0227584
[18] B. Opic and A. Kufner:
Hardy-type Inequalities. Longman Scientific and Technical, Harlow, Essex, UK, 1990.
MR 1069756
[19] E. M. Stein:
Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970.
MR 0290095 |
Zbl 0207.13501